-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
92 lines (84 loc) · 2.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import argparse
import urllib.request
from os import path
from pathlib import Path
import torch
from sahi import AutoDetectionModel
def download_yolov5_model(model_url: str, destination_path: str):
Path(destination_path).parent.mkdir(parents=True, exist_ok=True)
if not path.exists(destination_path):
urllib.request.urlretrieve(
model_url,
destination_path,
)
def obtain_detection_model(confidence_threshold: float):
device = (
f"cuda:{torch.cuda.current_device()}" if torch.cuda.is_available() else "cpu"
)
yolov5_model_path = "./models/yolov5m.pt"
download_yolov5_model(
model_url="https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5m.pt",
destination_path=yolov5_model_path,
)
return AutoDetectionModel.from_pretrained(
model_type="yolov5",
model_path=yolov5_model_path,
confidence_threshold=confidence_threshold,
device=device,
)
def create_arg_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Track objects using sahi in a video.")
parser.add_argument("file", type=str, help="Video files to process")
parser.add_argument(
"--output-path", type=str, default="output.mp4", help="Output video path"
)
parser.add_argument(
"--distance-threshold",
type=float,
help="Norfair's distance threshold",
default=0.7,
)
parser.add_argument(
"--skip-period",
type=int,
help="Norfair's skip period",
default=1,
)
parser.add_argument(
"--initialization-delay",
type=int,
help="Norfair's initialization delay",
default=15,
)
parser.add_argument(
"--hit-counter-max",
type=int,
help="Norfair's hit counter max",
default=30,
)
parser.add_argument(
"--disable-sahi",
dest="enable_sahi",
help="Disable SAHI implementation, run predictions in the whole video",
action="store_false",
default=True,
)
parser.add_argument(
"--slice-size",
type=int,
help="Sahi's slice height",
default=256,
)
parser.add_argument(
"--overlap-ratio",
type=float,
help="Sahi's overlap height ratio",
default=0.2,
)
parser.add_argument(
"--model-confidence-threshold",
type=float,
help="Model confidence threshold",
default=0.3,
)
return parser