You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
But,this config doesn't work with my own dataset.
And the image size of my dataset is 1920*1080.
This possibly be an issue with image size?
Or is there some other problem involved?
Using random seed 2
Training with 1 GPUs.
Make folder logs/2022_0802_1815_50_test
2022-08-02 18:15:50.853643: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
cudnn benchmark: True
cudnn deterministic: False
Creating metadata
['images', 'poses-openpose']
Data file extensions: {'images': 'jpg', 'poses-openpose': 'json'}
Searching in dir: images
Found 1 sequences
Found 5350 files
Folder at dataset/raw/images opened.
Folder at dataset/raw/poses-openpose opened.
Num datasets: 1
Num sequences: 1
Max sequence length: 5350
Epoch length: 1
Creating metadata
['images', 'poses-openpose']
Data file extensions: {'images': 'jpg', 'poses-openpose': 'json'}
Searching in dir: images
Found 1 sequences
Found 5350 files
Folder at dataset/raw/images opened.
Folder at dataset/raw/poses-openpose opened.
Num datasets: 1
Num sequences: 1
Max sequence length: 5350
Epoch length: 1
Train dataset length: 1
Val dataset length: 1
Using random seed 2
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Concatenate poses-openpose:
ext: json
num_channels: 3
interpolator: None
normalize: False
pre_aug_ops: decode_json, convert::imaginaire.utils.visualization.pose::openpose_to_npy
post_aug_ops: vis::imaginaire.utils.visualization.pose::draw_openpose_npy
computed_on_the_fly: False
is_mask: False for input.
Num. of channels in the input label: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Initialized temporal embedding network with the reference one.
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Concatenate poses-openpose:
ext: json
num_channels: 3
interpolator: None
normalize: False
pre_aug_ops: decode_json, convert::imaginaire.utils.visualization.pose::openpose_to_npy
post_aug_ops: vis::imaginaire.utils.visualization.pose::draw_openpose_npy
computed_on_the_fly: False
is_mask: False for input.
Num. of channels in the input label: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Initialize net_G and net_D weights using type: xavier gain: 0.02
Using random seed 2
net_G parameter count: 91,147,294
net_D parameter count: 5,598,018
Use custom initialization for the generator.
Setup trainer.
Using automatic mixed precision training.
Augmentation policy:
GAN mode: hinge
Perceptual loss:
Mode: vgg19
Loss GAN Weight 1.0
Loss FeatureMatching Weight 10.0
Loss Perceptual Weight 10.0
Loss Flow Weight 10.0
Loss Flow_L1 Weight 10.0
Loss Flow_Warp Weight 10.0
Loss Flow_Mask Weight 10.0
No checkpoint found.
Epoch 0 ...
Epoch length: 1
------ Now start training 3 frames -------
Traceback (most recent call last):
File "train.py", line 168, in <module>
main()
File "train.py", line 140, in main
trainer.gen_update(
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/trainers/vid2vid.py", line 254, in gen_update
net_G_output = self.net_G(data_t)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/utils/trainer.py", line 195, in forward
return self.module(*args, **kwargs)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/generators/fs_vid2vid.py", line 155, in forward
self.flow_generation(label, ref_labels, ref_images,
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/generators/fs_vid2vid.py", line 337, in flow_generation
ref_image_warp = resample(ref_image, flow_ref)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/model_utils/fs_vid2vid.py", line 26, in resample
final_grid = (grid + flow).permute(0, 2, 3, 1)
RuntimeError: The size of tensor a (910) must match the size of tensor b (912) at non-singleton dimension 3
And i tried to run command below: python -m torch.distributed.launch --nproc_per_node=1 train.py --single --config configs/projects/fs_vid2vid/youtube_dancing/test.yaml
I got this :
/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
and will be removed in future. Use torch.distributed.run.
Note that --use_env is set by default in torch.distributed.run.
If your script expects `--local_rank` argument to be set, please
change it to read from `os.environ['LOCAL_RANK']` instead. See
https://pytorch.org/docs/stable/distributed.html#launch-utility for
further instructions
warnings.warn(
Using random seed 2
Training with 1 GPUs.
Make folder logs/2022_0802_1857_59_test
2022-08-02 18:57:59.670150: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
cudnn benchmark: True
cudnn deterministic: False
Creating metadata
['images', 'poses-openpose']
Data file extensions: {'images': 'jpg', 'poses-openpose': 'json'}
Searching in dir: images
Found 1 sequences
Found 5350 files
Folder at dataset/raw/images opened.
Folder at dataset/raw/poses-openpose opened.
Num datasets: 1
Num sequences: 1
Max sequence length: 5350
Epoch length: 1
Creating metadata
['images', 'poses-openpose']
Data file extensions: {'images': 'jpg', 'poses-openpose': 'json'}
Searching in dir: images
Found 1 sequences
Found 5350 files
Folder at dataset/raw/images opened.
Folder at dataset/raw/poses-openpose opened.
Num datasets: 1
Num sequences: 1
Max sequence length: 5350
Epoch length: 1
Train dataset length: 1
Val dataset length: 1
Using random seed 2
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Concatenate poses-openpose:
ext: json
num_channels: 3
interpolator: None
normalize: False
pre_aug_ops: decode_json, convert::imaginaire.utils.visualization.pose::openpose_to_npy
post_aug_ops: vis::imaginaire.utils.visualization.pose::draw_openpose_npy
computed_on_the_fly: False
is_mask: False for input.
Num. of channels in the input label: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Initialized temporal embedding network with the reference one.
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Concatenate poses-openpose:
ext: json
num_channels: 3
interpolator: None
normalize: False
pre_aug_ops: decode_json, convert::imaginaire.utils.visualization.pose::openpose_to_npy
post_aug_ops: vis::imaginaire.utils.visualization.pose::draw_openpose_npy
computed_on_the_fly: False
is_mask: False for input.
Num. of channels in the input label: 3
Concatenate images:
ext: jpg
num_channels: 3
normalize: True
computed_on_the_fly: False
is_mask: False
pre_aug_ops: None
post_aug_ops: None for input.
Num. of channels in the input image: 3
Initialize net_G and net_D weights using type: xavier gain: 0.02
Using random seed 2
net_G parameter count: 91,147,294
net_D parameter count: 5,598,018
Use custom initialization for the generator.
Setup trainer.
Using automatic mixed precision training.
Augmentation policy:
GAN mode: hinge
Perceptual loss:
Mode: vgg19
Loss GAN Weight 1.0
Loss FeatureMatching Weight 10.0
Loss Perceptual Weight 10.0
Loss Flow Weight 10.0
Loss Flow_L1 Weight 10.0
Loss Flow_Warp Weight 10.0
Loss Flow_Mask Weight 10.0
No checkpoint found.
Epoch 0 ...
Epoch length: 1
------ Now start training 3 frames -------
Traceback (most recent call last):
File "train.py", line 168, in <module>
main()
File "train.py", line 140, in main
trainer.gen_update(
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/trainers/vid2vid.py", line 254, in gen_update
net_G_output = self.net_G(data_t)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/utils/trainer.py", line 195, in forward
return self.module(*args, **kwargs)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/generators/fs_vid2vid.py", line 155, in forward
self.flow_generation(label, ref_labels, ref_images,
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/generators/fs_vid2vid.py", line 337, in flow_generation
ref_image_warp = resample(ref_image, flow_ref)
File "/home/deepfake/fewshotvid2vid/imaginaire/imaginaire/model_utils/fs_vid2vid.py", line 26, in resample
final_grid = (grid + flow).permute(0, 2, 3, 1)
RuntimeError: The size of tensor a (910) must match the size of tensor b (912) at non-singleton dimension 3
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 19530) of binary: /home/deepfake/miniconda3/envs/imaginaire/bin/python
Traceback (most recent call last):
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launch.py", line 193, in <module>
main()
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launch.py", line 189, in main
launch(args)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launch.py", line 174, in launch
run(args)
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/run.py", line 689, in run
elastic_launch(
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 116, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/home/deepfake/miniconda3/envs/imaginaire/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 244, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
***************************************
train.py FAILED
=======================================
Root Cause:
[0]:
time: 2022-08-02_18:58:18
rank: 0 (local_rank: 0)
exitcode: 1 (pid: 19530)
error_file: <N/A>
msg: "Process failed with exitcode 1"
=======================================
Other Failures:
<NO_OTHER_FAILURES>
***************************************
They both have the issue of RuntimeError: The size of tensor a (910) must match the size of tensor b (912) at non-singleton dimension 3.
And I have the same problem using the image in 'dataset/unit_test/raw/vid2vid/pose'.
The text was updated successfully, but these errors were encountered:
Hello,
I tried to run command below:
python train.py --single --config configs/projects/fs_vid2vid/youtube_dancing/test.yaml
This test.yaml is from https://github.com/NVlabs/imaginaire/issues/106#issuecomment-966725785
This config and dataset both can work.
The image size of this dataset is 380*380.
But,this config doesn't work with my own dataset.
And the image size of my dataset is 1920*1080.
This possibly be an issue with image size?
Or is there some other problem involved?
And i tried to run command below:
python -m torch.distributed.launch --nproc_per_node=1 train.py --single --config configs/projects/fs_vid2vid/youtube_dancing/test.yaml
I got this :
They both have the issue of
RuntimeError: The size of tensor a (910) must match the size of tensor b (912) at non-singleton dimension 3
.And I have the same problem using the image in 'dataset/unit_test/raw/vid2vid/pose'.
The text was updated successfully, but these errors were encountered: