Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Misaligned read from smem doing TMA store #3602

Open
jacobhinkle opened this issue Dec 17, 2024 · 1 comment
Open

Misaligned read from smem doing TMA store #3602

jacobhinkle opened this issue Dec 17, 2024 · 1 comment
Assignees
Labels

Comments

@jacobhinkle
Copy link
Collaborator

The following repro hits a misaligned read from shared memory during the TMA instruction:

TEST_F(HopperMatmulTest, MisalignedReadTMAStore) {
  auto fusion = std::make_unique<Fusion>();
  FusionGuard fg(fusion.get());

  constexpr int64_t M = 16896, N = 128, K = 16;

  TensorView* a = makeContigConcreteTensor({-1, 1, -1}, DataType::Half);
  TensorView* b = makeContigConcreteTensor({1, -1, -1}, DataType::Half);
  TensorView* c = fusedMultiplySum(a, b, {-1});
  TensorView* out = castOp(DataType::Half, c);

  fusion->addInput(a);
  fusion->addInput(b);
  fusion->addOutput(out);

  auto options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA);
  auto a_ref = at::randn({M, 1, K}, options);
  auto b_ref = at::randn({1, N, K}, options);
  auto out_ref = at::matmul(a_ref.squeeze(), b_ref.squeeze().t()).to(at::kHalf);

  MatMulTileOptions gemm_tile;
  gemm_tile.cta_tile = GemmTile(128, 128, 16);
  gemm_tile.warp_tile = GemmTile(64, 64, 16);

  MatmulParams mparams;
  mparams.supported_vec_size = {8, 8, 8};
  mparams.mma_macro = MmaMacro::Hopper_64_64_16;
  mparams.tile_sizes = gemm_tile;
  mparams.cta_order = MatmulParams::TileRasterizationOrder::ColumnMajor;
  mparams.async_gmem_load_operands = true;
  mparams.circular_buffer_options.circular_buffer_smem_write = false;
  mparams.circular_buffer_options.circular_buffer_smem_read = false;
  mparams.circular_buffer_options.smem_circular_buffer_stage = 0;
  mparams.splitk_factor = 1;
  mparams.use_smem_epilogue = true;
  mparams.cluster_dims = {1, 1, 1};
  mparams.promote_prologue_smem_reuse = false;

  std::cout << mparams.toString() << std::endl;

  SchedulerEntry::makeSchedulerInstance(SchedulerType::Matmul)
      ->schedule(fusion.get(), &mparams);

  std::vector<c10::IValue> inputs = {a_ref, b_ref};

  KernelExecutor ke;
  ke.compile(fusion.get(), inputs);
  EXPECT_TRUE(getBankConflictInfo(ke.kernel()).empty());
  auto cg_outputs = ke.run(inputs);
  ASSERT_FALSE(
      PredicatedChecker::isCpAsyncMmaPredicatedByIfThenElse(ke.kernel()));

  // Relax tolerance for larger sum due to large K
  EXPECT_TRUE(cg_outputs[0].allclose(out_ref, 1e-6 * K, 1e-6 * K));
}

The error is

terminate called after throwing an instance of 'nvfuser::nvfError'
what(): INTERNAL ASSERT FAILED at "/opt/pytorch/nvfuser/csrc/runtime/executor_utils.cpp":1180, please report a bug with repro script to NVFuser at https://github.com/NVIDIA/Fuser/issues. CUDA error: CUDA_ERROR_MISALIGNED_ADDRESS failed with error misaligned address
Exception raised from ~CompiledKernel at /opt/pytorch/nvfuser/csrc/runtime/executor_utils.cpp:1180 (most recent call first):

cc @rdspring1 @protonu

@jacobhinkle jacobhinkle self-assigned this Dec 17, 2024
@jacobhinkle
Copy link
Collaborator Author

Generated kernel

__global__ void nvfuser_none_f0_c0_r0_g0(Tensor<__half, 3, 3> T0, Tensor<__half, 3, 3> T1, const __grid_constant__ TensorMap var0, const __grid_constant__ TensorMap var1, const __grid_constant__ TensorMap var2, Tensor<__half, 2, 2> T3) {
  alignas(16) extern __shared__ char array[];
  const unsigned smem_offset = 0;
  nvfuser_index_t i3;
  i3 = ceilDiv(T0.logical_size[2LL], 16);
  const TensorMap* ptr4;
  ptr4 = &var0;
  nvfuser_index_t i5;
  i5 = 128 * ((nvfuser_index_t)blockIdx.x);
  int i6;
  i6 = (int32_t)(i5);
  __half* T5 = reinterpret_cast<__half*>(array + smem_offset + 4096);
  unsigned i7;
  i7 = toSmem(T5);
  const TensorMap* ptr8;
  ptr8 = &var1;
  nvfuser_index_t i9;
  i9 = 128 * ((nvfuser_index_t)blockIdx.y);
  int i10;
  i10 = (int32_t)(i9);
  __half* T4 = reinterpret_cast<__half*>(array + smem_offset + 0);
  unsigned i11;
  i11 = toSmem(T4);
  nvfuser_index_t i12;
  i12 = ((nvfuser_index_t)threadIdx.y) / 2;
  unsigned i13;
  i13 = i11 + (2048 * i12);
  uint64_t i14;
  i14 = 13835058124001640448ULL | ((262143ULL & (uint64_t)(i13)) >> 4ULL);
  nvfuser_index_t i15;
  i15 = ((nvfuser_index_t)threadIdx.y) % 2;
  unsigned i16;
  i16 = i7 + (2048 * i15);
  uint64_t i17;
  i17 = 13835058124001640448ULL | ((262143ULL & (uint64_t)(i16)) >> 4ULL);
  nvfuser_index_t i18;
  i18 = ((((nvfuser_index_t)threadIdx.x) / 32) * 16) + ((((nvfuser_index_t)threadIdx.x) % 32) % 16);
  bool b19;
  b19 = ((nvfuser_index_t)threadIdx.x) == 0;
  bool b20;
  b20 = b19 && (((nvfuser_index_t)threadIdx.y) == 0);
  Array<__half, 32, 8> T6;
  __half* T7 = reinterpret_cast<__half*>(array + smem_offset + 8208);
  float T2[32];
  ((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))).set(0);
  asm volatile("wgmma.fence.sync.aligned;\n");
  asm volatile("fence.proxy.async;\n");
  #pragma unroll 1
  for(nvfuser_index_t i21 = 0; i21 < i3; ++i21) {
    int i22;
    i22 = (int32_t)((16 * i21));
    Array<int, 2, 1> a23;
    a23 = Array<int, 2, 1>{i22, i6};
    Array<int, 2, 1> a24;
    a24 = Array<int, 2, 1>{i22, i10};
    uint64_t* T8 = reinterpret_cast<uint64_t*>(array + smem_offset + 8208);
    mbarrier::init(toSmem(T8), 1U);
    __syncthreads();
    if (b20) {
      uint64_t i25;
      i25 = mbarrier::arriveExpectTX(toSmem(T8), 4096U);
      Hopper::cpAsyncBulkTensorTileG2S((Hopper::CpAsyncBulkTensorTileG2SIndex<2>{ ptr4, a23, toSmem(T8) }), i7);
      mbarrier::wait(toSmem(T8), i25);
    }
    __syncthreads();
    mbarrier::inval(toSmem(T8));
    uint64_t* T9 = reinterpret_cast<uint64_t*>(array + smem_offset + 8192);
    mbarrier::init(toSmem(T9), 1U);
    __syncthreads();
    if (b20) {
      uint64_t i26;
      i26 = mbarrier::arriveExpectTX(toSmem(T9), 4096U);
      Hopper::cpAsyncBulkTensorTileG2S((Hopper::CpAsyncBulkTensorTileG2SIndex<2>{ ptr8, a24, toSmem(T9) }), i11);
      mbarrier::wait(toSmem(T9), i26);
    }
    __syncthreads();
    mbarrier::inval(toSmem(T9));
    asm volatile(
      "{\n"
      "  .reg .pred p0; \n"
      "  setp.ne.b32 p0, %34, 0;\n"
      "  wgmma.mma_async.sync.aligned.m64n64k16.f32.f16.f16 {%0, %1, %2, %3, %4, %5, %6, %7, %8, %9, %10, %11, %12, %13, %14, %15, %16, %17, %18, %19, %20, %21, %22, %23, %24, %25, %26, %27, %28, %29, %30, %31}, %32, %33, p0, %35, %36, %37, %38;\n"
      "}\n"
      :"+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[0]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[1]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[2]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[3]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[4]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[5]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[6]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[7]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[8]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[9]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[10]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[11]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[12]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[13]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[14]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[15]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[16]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[17]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[18]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[19]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[20]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[21]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[22]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[23]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[24]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[25]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[26]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[27]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[28]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[29]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[30]),
       "+f"((*reinterpret_cast<Array<float, 32, 1>*>(&T2[0]))[31])
      :"l"(i14),
       "l"(i17),
       "n"((uint32_t)(true)),
       "n"(1),
       "n"(1),
       "n"(0),
       "n"(0)
    );
    asm volatile("wgmma.commit_group.sync.aligned;\n");
    asm volatile("wgmma.wait_group.sync.aligned %0;\n"::"n"(0LL):"memory");
  }
  asm volatile("wgmma.commit_group.sync.aligned;\n");
  asm volatile("wgmma.wait_group.sync.aligned %0;\n"::"n"(0LL):"memory");
  #pragma unroll
  for(nvfuser_index_t i27 = 0; i27 < 8; ++i27) {
    nvfuser_index_t i28;
    i28 = 4 * i27;
    #pragma unroll
    for(nvfuser_index_t i29 = 0; i29 < 2; ++i29) {
      nvfuser_index_t i30;
      i30 = i28 + (2 * i29);
      #pragma unroll
      for(nvfuser_index_t i31 = 0; i31 < 2; ++i31) {
        nvfuser_index_t i32;
        i32 = i30 + i31;
        T6[i32]
           = __float2half(T2[i32]);
      }
    }
  }
  #pragma unroll
  for(nvfuser_index_t i33 = 0; i33 < 4; ++i33) {
    asm volatile(
      "stmatrix.sync.aligned.x4.m8n8.shared.b16 [%0], {%1, %2, %3, %4};\n"
      :
      :"r"((uint32_t)((toSmem(T7) + ((((nvfuser_index_t)threadIdx.y) * 8192) + (((i33 / 4) * 8192) + ((i18 * 128) + (((((((nvfuser_index_t)threadIdx.x) % 32) / 16) + ((i33 % 4) * 2)) ^ (i18 % 8)) * 16))))))),
       "r"((*reinterpret_cast<Array<uint32_t, 4, 1>*>(&T6[(8 * i33)]))[0]),
       "r"((*reinterpret_cast<Array<uint32_t, 4, 1>*>(&T6[(8 * i33)]))[1]),
       "r"((*reinterpret_cast<Array<uint32_t, 4, 1>*>(&T6[(8 * i33)]))[2]),
       "r"((*reinterpret_cast<Array<uint32_t, 4, 1>*>(&T6[(8 * i33)]))[3])
    );
  }
  __syncthreads();
  asm volatile("fence.proxy.async;\n");
  if (b19) {
    Hopper::cpAsyncBulkTensorTileS2G((Hopper::CpAsyncBulkTensorTileS2GIndex<2>{ (&var2), (Array<int, 2, 1>{(int32_t)(((64 * i15) + i5)), (int32_t)(((64 * i12) + i9))}) }), (toSmem(T7) + (8192 * ((nvfuser_index_t)threadIdx.y))));
  }
  asm volatile("cp.async.bulk.commit_group;\n");
  asm volatile("cp.async.bulk.wait_group.read %0;\n"::"n"(0LL):"memory");
}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant