-
Notifications
You must be signed in to change notification settings - Fork 23
/
loss_function.py
49 lines (42 loc) · 1.6 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from torch import nn
import torch
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, logits=True, reduce=True):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.logits = logits
self.reduce = reduce
def forward(self, inputs, targets):
if self.logits:
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduce=False)
else:
BCE_loss = F.binary_cross_entropy(inputs, targets, reduce=False)
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
if self.reduce:
return torch.mean(F_loss)
else:
return F_loss
class Classification_Loss(nn.Module):
def __init__(self):
super(Classification_Loss, self).__init__()
self.criterionCE = nn.CrossEntropyLoss()
def forward(self, model_output, targets, model):
# torch.empty(3, dtype=torch.long)
# model_output = model_output.long()
# targets = targets.long()
# print(model_output)
# print(F.sigmoid(model_output))
# print(targets)
# print('kkk')
regularization_loss = 0
for param in model.module.parameters():
regularization_loss += torch.sum(torch.abs(param)) #+torch.sum(torch.abs(param))**2
# loss = 0.00001 * regularization_loss
loss = 0
# model_output = F.sigmoid(model_output)
# loss = self.mse_criterion(model_output,targets)
loss += self.criterionCE(model_output,targets)
return loss