-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSoftstripMatrix.py
90 lines (83 loc) · 3.65 KB
/
SoftstripMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
from collections import Counter
class SoftstripMatrix:
"""
Represents the Softstrip with a 2D array.
"""
def __init__(self, img, grayscale_img):
self.create_matrices(img, grayscale_img)
def create_matrices(self, img, grayscale_img):
"""
Creates the following 2D matrices:
- binary
- grayscale
"""
# The dilated img has less noise in the start bar
# so the binary matrix uses the start bar from the
# dilated img instead of the original img
dilated_img = self.create_dilated_img(img)
rows, columns, _ = img.shape
self.binary_matrix = []
self.grayscale_matrix = []
current_img = img
last_black_pixel_position = 0
for row in range(rows):
current_img = dilated_img
binary_row = []
grayscale_row = []
for column in range(columns):
pixel = current_img[row, column]
if pixel[0] == 0:
binary_row.append(1) # I know...a black pixel is supposed to be a 0
grayscale_row.append(grayscale_img[row, column])
if (len(binary_row) - 1) > last_black_pixel_position:
last_black_pixel_position = len(binary_row) - 1
elif pixel[0] == 255:
if len(binary_row) > 0: # Don't append pixels from the quiet zone
current_img = img
binary_row.append(0) # ... and white pixels are supposed to be 1s
grayscale_row.append(grayscale_img[row, column])
self.binary_matrix.append(binary_row)
self.grayscale_matrix.append(grayscale_row)
self.normalize_matrices(last_black_pixel_position)
def create_dilated_img(self, img):
"""
Applies dilation with a 5x5 kernel and 3 iterations
"""
copy = img.copy()
_, threshold = cv2.threshold(copy, 127, 255, cv2.THRESH_BINARY)
inverted = cv2.bitwise_not(threshold)
inverted_dilated = cv2.dilate(inverted, (5,5), iterations=3)
dilated = cv2.bitwise_not(inverted_dilated)
return dilated
def normalize_matrices(self, last_black_pixel_position):
"""
Normalizes all rows so that they have all the same size
"""
# Remove all pixels after the last black pixel position
# If a row is too small, repeat the last pixel
avg_row_len = 0
for index, row in enumerate(self.binary_matrix):
if len(row) > 0:
del self.binary_matrix[index][(last_black_pixel_position + 1):]
del self.grayscale_matrix[index][(last_black_pixel_position + 1):]
while len(self.binary_matrix[index]) < (last_black_pixel_position + 1):
self.binary_matrix[index].append(self.binary_matrix[index][-1])
self.grayscale_matrix[index].append(self.grayscale_matrix[index][-1])
avg_row_len += len(self.binary_matrix[index])
avg_row_len /= len(self.binary_matrix)
# Remove all rows < average row length
remove = list()
for index, row in enumerate(self.binary_matrix):
if len(row) < avg_row_len:
remove.append(index)
for i in reversed(remove):
del self.binary_matrix[i]
del self.grayscale_matrix[i]
def print_pixel_matrix(self):
for row in self.pixel_matrix:
row_string = ''.join(map(str, row))
print(row_string)
def print_gray_pixel_matrix(self):
for row in self.gray_matrix:
print(row)