-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
322 lines (269 loc) · 12.9 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# Supervised Contrastive Loss
class SupConLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits valori molto alti? 8k
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability cambio da 1 a 0?
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# logits alti? -114705.5000
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob logits mask valori alti
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
div = mask.sum(1)
div = div.cpu()
indices = np.where(div == 0)[0]
# compute mean of log-likelihood over positive log
if len(indices) > 0:
for i in range(indices):
div_not_cpu = mask.sum(1)
if indices[i] != 0:
div_not_cpu[indices[i]] = div_not_cpu[indices[i] -1]
else:
div_not_cpu[indices[i]] = div_not_cpu[indices[i] + 1]
mean_log_prob_pos = (mask * log_prob).sum(1) / div_not_cpu
del div_not_cpu
else:
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
#loss = torch.mean(loss)
torch.cuda.empty_cache()
return loss
#Supervised Contrastive Loss For Text
class SupConLossText(nn.Module):
def __init__(self, temperature=0.07, base_temperature=0.07,weights= None):
super(SupConLossText, self).__init__()
self.temperature = temperature
self.base_temperature = base_temperature
self.weights = weights
def forward(self, features, labels=None, mask=None):
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
batch_size = features.shape[0] ## 2*N
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
contrast_count = 2
anchor_count = contrast_count
assert batch_size % 2 == 0
mask = torch.eye(batch_size // 2, dtype=torch.float32).to(device)
mask = mask.repeat(anchor_count, contrast_count)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
raise NotImplementedError
contrast_feature = features
anchor_feature = contrast_feature
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size).view(-1, 1).to(device),
0
)
## it produces 1 for the non-matching places and 0 for matching places i.e its opposite of mask
mask = mask * logits_mask
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
div = mask.sum(1)
div = div.cpu()
indices = np.where(div == 0)[0]
# compute mean of log-likelihood over positive log
if len(indices) > 0:
div_not_cpu = mask.sum(1)
if indices != 0:
div_not_cpu[indices] = div_not_cpu[indices -1]
else:
div_not_cpu[indices] = div_not_cpu[indices + 1]
mean_log_prob_pos = (mask * log_prob).sum(1) / div_not_cpu
del div_not_cpu
else:
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
loss = - 1 * mean_log_prob_pos
for i in range(len(labels)):
if labels[i][0].item() == 0:
loss[i] = loss[i]*self.weights[0]
else:
loss[i] = loss[i]*self.weights[1]
# loss
loss = loss.mean()
return loss
import torch
import torch.nn.functional as F
from torch import nn, norm
__all__ = ['InfoNCE', 'info_nce']
#InfoNCE Loss
class InfoNCE(nn.Module):
"""
Calculates the InfoNCE loss for self-supervised learning.
This contrastive loss enforces the embeddings of similar (positive) samples to be close
and those of different (negative) samples to be distant.
A query embedding is compared with one positive key and with one or more negative keys.
References:
https://arxiv.org/abs/1807.03748v2
https://arxiv.org/abs/2010.05113
Args:
temperature: Logits are divided by temperature before calculating the cross entropy.
reduction: Reduction method applied to the output.
Value must be one of ['none', 'sum', 'mean'].
See torch.nn.functional.cross_entropy for more details about each option.
negative_mode: Determines how the (optional) negative_keys are handled.
Value must be one of ['paired', 'unpaired'].
If 'paired', then each query sample is paired with a number of negative keys.
Comparable to a triplet loss, but with multiple negatives per sample.
If 'unpaired', then the set of negative keys are all unrelated to any positive key.
Input shape:
query: (N, D) Tensor with query samples (e.g. embeddings of the input).
positive_key: (N, D) Tensor with positive samples (e.g. embeddings of augmented input).
negative_keys (optional): Tensor with negative samples (e.g. embeddings of other inputs)
If negative_mode = 'paired', then negative_keys is a (N, M, D) Tensor.
If negative_mode = 'unpaired', then negative_keys is a (M, D) Tensor.
If None, then the negative keys for a sample are the positive keys for the other samples.
Returns:
Value of the InfoNCE Loss.
Examples:
>>> loss = InfoNCE()
>>> batch_size, num_negative, embedding_size = 32, 48, 128
>>> query = torch.randn(batch_size, embedding_size)
>>> positive_key = torch.randn(batch_size, embedding_size)
>>> negative_keys = torch.randn(num_negative, embedding_size)
>>> output = loss(query, positive_key, negative_keys)
"""
def __init__(self, temperature=0.1, reduction='mean', negative_mode='unpaired'):
super().__init__()
self.temperature = temperature
self.reduction = reduction
self.negative_mode = negative_mode
def forward(self, query, positive_key, negative_keys=None):
return info_nce(query, positive_key, negative_keys,
temperature=self.temperature,
reduction=self.reduction,
negative_mode=self.negative_mode)
import torch.nn.functional as Fun
def info_nce(query, positive_key, negative_keys=None, temperature=0.1, reduction='mean', negative_mode='unpaired'):
# Check input dimensionality.
if query.dim() != 2:
raise ValueError('<query> must have 2 dimensions.')
if positive_key.dim() != 2:
raise ValueError('<positive_key> must have 2 dimensions.')
if negative_keys is not None:
if negative_mode == 'unpaired' and negative_keys.dim() != 2:
raise ValueError("<negative_keys> must have 2 dimensions if <negative_mode> == 'unpaired'.")
if negative_mode == 'paired' and negative_keys.dim() != 3:
raise ValueError("<negative_keys> must have 3 dimensions if <negative_mode> == 'paired'.")
# Check matching number of samples.
if len(query) != len(positive_key):
raise ValueError('<query> and <positive_key> must must have the same number of samples.')
if negative_keys is not None:
if negative_mode == 'paired' and len(query) != len(negative_keys):
raise ValueError("If negative_mode == 'paired', then <negative_keys> must have the same number of samples as <query>.")
# Embedding vectors should have same number of components.
if query.shape[-1] != positive_key.shape[-1]:
raise ValueError('Vectors of <query> and <positive_key> should have the same number of components.')
if negative_keys is not None:
if query.shape[-1] != negative_keys.shape[-1]:
raise ValueError('Vectors of <query> and <negative_keys> should have the same number of components.')
# Normalize to unit vectors
query, positive_key, negative_keys = normalize(query, positive_key, negative_keys)
if negative_keys is not None:
# Explicit negative keys
# Cosine between positive pairs
positive_logit = torch.sum(query * positive_key, dim=1, keepdim=True)
if negative_mode == 'unpaired':
# Cosine between all query-negative combinations
negative_logits = query @ transpose(negative_keys)
elif negative_mode == 'paired':
query = query.unsqueeze(1)
negative_logits = query @ transpose(negative_keys)
negative_logits = negative_logits.squeeze(1)
# First index in last dimension are the positive samples
logits = torch.cat([positive_logit, negative_logits], dim=1)
labels = torch.zeros(len(logits), dtype=torch.long, device=query.device)
else:
# Negative keys are implicitly off-diagonal positive keys.
# Cosine between all combinations
logits = query @ transpose(positive_key)
# Positive keys are the entries on the diagonal
labels = torch.arange(len(query), device=query.device)
return F.cross_entropy(logits / temperature, labels, reduction=reduction)
def transpose(x):
return x.transpose(-2, -1)
def normalize(*xs):
return [None if x is None else F.normalize(x, dim=-1) for x in xs]