-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathvideo_transforms.py
1281 lines (1127 loc) · 42.9 KB
/
video_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
import math
import numpy as np
import random
import torch
import torchvision.transforms.functional as F
from PIL import Image
from torchvision import transforms
from rand_augment import rand_augment_transform
from random_erasing import RandomErasing
import numbers
import PIL
import torchvision
import functional as FF
_pil_interpolation_to_str = {
Image.NEAREST: "PIL.Image.NEAREST",
Image.BILINEAR: "PIL.Image.BILINEAR",
Image.BICUBIC: "PIL.Image.BICUBIC",
Image.LANCZOS: "PIL.Image.LANCZOS",
Image.HAMMING: "PIL.Image.HAMMING",
Image.BOX: "PIL.Image.BOX",
}
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
def _pil_interp(method):
if method == "bicubic":
return Image.BICUBIC
elif method == "lanczos":
return Image.LANCZOS
elif method == "hamming":
return Image.HAMMING
else:
return Image.BILINEAR
def random_short_side_scale_jitter(
images, min_size, max_size, boxes=None, inverse_uniform_sampling=False
):
"""
Perform a spatial short scale jittering on the given images and
corresponding boxes.
Args:
images (tensor): images to perform scale jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
min_size (int): the minimal size to scale the frames.
max_size (int): the maximal size to scale the frames.
boxes (ndarray): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
inverse_uniform_sampling (bool): if True, sample uniformly in
[1 / max_scale, 1 / min_scale] and take a reciprocal to get the
scale. If False, take a uniform sample from [min_scale, max_scale].
Returns:
(tensor): the scaled images with dimension of
`num frames` x `channel` x `new height` x `new width`.
(ndarray or None): the scaled boxes with dimension of
`num boxes` x 4.
"""
if inverse_uniform_sampling:
size = int(
round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size))
)
else:
size = int(round(np.random.uniform(min_size, max_size)))
height = images.shape[2]
width = images.shape[3]
if (width <= height and width == size) or (
height <= width and height == size
):
return images, boxes
new_width = size
new_height = size
if width < height:
new_height = int(math.floor((float(height) / width) * size))
if boxes is not None:
boxes = boxes * float(new_height) / height
else:
new_width = int(math.floor((float(width) / height) * size))
if boxes is not None:
boxes = boxes * float(new_width) / width
return (
torch.nn.functional.interpolate(
images,
size=(new_height, new_width),
mode="bilinear",
align_corners=False,
),
boxes,
)
def crop_boxes(boxes, x_offset, y_offset):
"""
Peform crop on the bounding boxes given the offsets.
Args:
boxes (ndarray or None): bounding boxes to peform crop. The dimension
is `num boxes` x 4.
x_offset (int): cropping offset in the x axis.
y_offset (int): cropping offset in the y axis.
Returns:
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
cropped_boxes = boxes.copy()
cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset
cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset
return cropped_boxes
def random_crop(images, size, boxes=None):
"""
Perform random spatial crop on the given images and corresponding boxes.
Args:
images (tensor): images to perform random crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): the size of height and width to crop on the image.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (tensor): cropped images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
if images.shape[2] == size and images.shape[3] == size:
return images
height = images.shape[2]
width = images.shape[3]
y_offset = 0
if height > size:
y_offset = int(np.random.randint(0, height - size))
x_offset = 0
if width > size:
x_offset = int(np.random.randint(0, width - size))
cropped = images[
:, :, y_offset : y_offset + size, x_offset : x_offset + size
]
cropped_boxes = (
crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
)
return cropped, cropped_boxes
def horizontal_flip(prob, images, boxes=None):
"""
Perform horizontal flip on the given images and corresponding boxes.
Args:
prob (float): probility to flip the images.
images (tensor): images to perform horizontal flip, the dimension is
`num frames` x `channel` x `height` x `width`.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
images (tensor): images with dimension of
`num frames` x `channel` x `height` x `width`.
flipped_boxes (ndarray or None): the flipped boxes with dimension of
`num boxes` x 4.
"""
if boxes is None:
flipped_boxes = None
else:
flipped_boxes = boxes.copy()
if np.random.uniform() < prob:
images = images.flip((-1))
if len(images.shape) == 3:
width = images.shape[2]
elif len(images.shape) == 4:
width = images.shape[3]
else:
raise NotImplementedError("Dimension does not supported")
if boxes is not None:
flipped_boxes[:, [0, 2]] = width - boxes[:, [2, 0]] - 1
return images, flipped_boxes
def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None):
"""
Perform uniform spatial sampling on the images and corresponding boxes.
Args:
images (tensor): images to perform uniform crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): size of height and weight to crop the images.
spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width
is larger than height. Or 0, 1, or 2 for top, center, and bottom
crop if height is larger than width.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
scale_size (int): optinal. If not None, resize the images to scale_size before
performing any crop.
Returns:
cropped (tensor): images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
assert spatial_idx in [0, 1, 2]
ndim = len(images.shape)
if ndim == 3:
images = images.unsqueeze(0)
height = images.shape[2]
width = images.shape[3]
if scale_size is not None:
if width <= height:
width, height = scale_size, int(height / width * scale_size)
else:
width, height = int(width / height * scale_size), scale_size
images = torch.nn.functional.interpolate(
images,
size=(height, width),
mode="bilinear",
align_corners=False,
)
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
if height > width:
if spatial_idx == 0:
y_offset = 0
elif spatial_idx == 2:
y_offset = height - size
else:
if spatial_idx == 0:
x_offset = 0
elif spatial_idx == 2:
x_offset = width - size
cropped = images[
:, :, y_offset : y_offset + size, x_offset : x_offset + size
]
cropped_boxes = (
crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
)
if ndim == 3:
cropped = cropped.squeeze(0)
return cropped, cropped_boxes
def clip_boxes_to_image(boxes, height, width):
"""
Clip an array of boxes to an image with the given height and width.
Args:
boxes (ndarray): bounding boxes to perform clipping.
Dimension is `num boxes` x 4.
height (int): given image height.
width (int): given image width.
Returns:
clipped_boxes (ndarray): the clipped boxes with dimension of
`num boxes` x 4.
"""
clipped_boxes = boxes.copy()
clipped_boxes[:, [0, 2]] = np.minimum(
width - 1.0, np.maximum(0.0, boxes[:, [0, 2]])
)
clipped_boxes[:, [1, 3]] = np.minimum(
height - 1.0, np.maximum(0.0, boxes[:, [1, 3]])
)
return clipped_boxes
def blend(images1, images2, alpha):
"""
Blend two images with a given weight alpha.
Args:
images1 (tensor): the first images to be blended, the dimension is
`num frames` x `channel` x `height` x `width`.
images2 (tensor): the second images to be blended, the dimension is
`num frames` x `channel` x `height` x `width`.
alpha (float): the blending weight.
Returns:
(tensor): blended images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
return images1 * alpha + images2 * (1 - alpha)
def grayscale(images):
"""
Get the grayscale for the input images. The channels of images should be
in order BGR.
Args:
images (tensor): the input images for getting grayscale. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
img_gray (tensor): blended images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
# R -> 0.299, G -> 0.587, B -> 0.114.
img_gray = torch.tensor(images)
gray_channel = (
0.299 * images[:, 2] + 0.587 * images[:, 1] + 0.114 * images[:, 0]
)
img_gray[:, 0] = gray_channel
img_gray[:, 1] = gray_channel
img_gray[:, 2] = gray_channel
return img_gray
def color_jitter(images, img_brightness=0, img_contrast=0, img_saturation=0):
"""
Perfrom a color jittering on the input images. The channels of images
should be in order BGR.
Args:
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
img_brightness (float): jitter ratio for brightness.
img_contrast (float): jitter ratio for contrast.
img_saturation (float): jitter ratio for saturation.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
jitter = []
if img_brightness != 0:
jitter.append("brightness")
if img_contrast != 0:
jitter.append("contrast")
if img_saturation != 0:
jitter.append("saturation")
if len(jitter) > 0:
order = np.random.permutation(np.arange(len(jitter)))
for idx in range(0, len(jitter)):
if jitter[order[idx]] == "brightness":
images = brightness_jitter(img_brightness, images)
elif jitter[order[idx]] == "contrast":
images = contrast_jitter(img_contrast, images)
elif jitter[order[idx]] == "saturation":
images = saturation_jitter(img_saturation, images)
return images
def brightness_jitter(var, images):
"""
Perfrom brightness jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for brightness.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_bright = torch.zeros(images.shape)
images = blend(images, img_bright, alpha)
return images
def contrast_jitter(var, images):
"""
Perfrom contrast jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for contrast.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_gray = grayscale(images)
img_gray[:] = torch.mean(img_gray, dim=(1, 2, 3), keepdim=True)
images = blend(images, img_gray, alpha)
return images
def saturation_jitter(var, images):
"""
Perfrom saturation jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for saturation.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_gray = grayscale(images)
images = blend(images, img_gray, alpha)
return images
def lighting_jitter(images, alphastd, eigval, eigvec):
"""
Perform AlexNet-style PCA jitter on the given images.
Args:
images (tensor): images to perform lighting jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
alphastd (float): jitter ratio for PCA jitter.
eigval (list): eigenvalues for PCA jitter.
eigvec (list[list]): eigenvectors for PCA jitter.
Returns:
out_images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
if alphastd == 0:
return images
# generate alpha1, alpha2, alpha3.
alpha = np.random.normal(0, alphastd, size=(1, 3))
eig_vec = np.array(eigvec)
eig_val = np.reshape(eigval, (1, 3))
rgb = np.sum(
eig_vec * np.repeat(alpha, 3, axis=0) * np.repeat(eig_val, 3, axis=0),
axis=1,
)
out_images = torch.zeros_like(images)
if len(images.shape) == 3:
# C H W
channel_dim = 0
elif len(images.shape) == 4:
# T C H W
channel_dim = 1
else:
raise NotImplementedError(f"Unsupported dimension {len(images.shape)}")
for idx in range(images.shape[channel_dim]):
# C H W
if len(images.shape) == 3:
out_images[idx] = images[idx] + rgb[2 - idx]
# T C H W
elif len(images.shape) == 4:
out_images[:, idx] = images[:, idx] + rgb[2 - idx]
else:
raise NotImplementedError(
f"Unsupported dimension {len(images.shape)}"
)
return out_images
def color_normalization(images, mean, stddev):
"""
Perform color nomration on the given images.
Args:
images (tensor): images to perform color normalization. Dimension is
`num frames` x `channel` x `height` x `width`.
mean (list): mean values for normalization.
stddev (list): standard deviations for normalization.
Returns:
out_images (tensor): the noramlized images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
if len(images.shape) == 3:
assert (
len(mean) == images.shape[0]
), "channel mean not computed properly"
assert (
len(stddev) == images.shape[0]
), "channel stddev not computed properly"
elif len(images.shape) == 4:
assert (
len(mean) == images.shape[1]
), "channel mean not computed properly"
assert (
len(stddev) == images.shape[1]
), "channel stddev not computed properly"
else:
raise NotImplementedError(f"Unsupported dimension {len(images.shape)}")
out_images = torch.zeros_like(images)
for idx in range(len(mean)):
# C H W
if len(images.shape) == 3:
out_images[idx] = (images[idx] - mean[idx]) / stddev[idx]
elif len(images.shape) == 4:
out_images[:, idx] = (images[:, idx] - mean[idx]) / stddev[idx]
else:
raise NotImplementedError(
f"Unsupported dimension {len(images.shape)}"
)
return out_images
def _get_param_spatial_crop(
scale, ratio, height, width, num_repeat=10, log_scale=True, switch_hw=False
):
"""
Given scale, ratio, height and width, return sampled coordinates of the videos.
"""
for _ in range(num_repeat):
area = height * width
target_area = random.uniform(*scale) * area
if log_scale:
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
else:
aspect_ratio = random.uniform(*ratio)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if np.random.uniform() < 0.5 and switch_hw:
w, h = h, w
if 0 < w <= width and 0 < h <= height:
i = random.randint(0, height - h)
j = random.randint(0, width - w)
return i, j, h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
if in_ratio < min(ratio):
w = width
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = height
w = int(round(h * max(ratio)))
else: # whole image
w = width
h = height
i = (height - h) // 2
j = (width - w) // 2
return i, j, h, w
def random_resized_crop(
images,
target_height,
target_width,
scale=(0.8, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
):
"""
Crop the given images to random size and aspect ratio. A crop of random
size (default: of 0.08 to 1.0) of the original size and a random aspect
ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This
crop is finally resized to given size. This is popularly used to train the
Inception networks.
Args:
images: Images to perform resizing and cropping.
target_height: Desired height after cropping.
target_width: Desired width after cropping.
scale: Scale range of Inception-style area based random resizing.
ratio: Aspect ratio range of Inception-style area based random resizing.
"""
height = images.shape[2]
width = images.shape[3]
i, j, h, w = _get_param_spatial_crop(scale, ratio, height, width)
cropped = images[:, :, i : i + h, j : j + w]
return torch.nn.functional.interpolate(
cropped,
size=(target_height, target_width),
mode="bilinear",
align_corners=False,
)
def random_resized_crop_with_shift(
images,
target_height,
target_width,
scale=(0.8, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
):
"""
This is similar to random_resized_crop. However, it samples two different
boxes (for cropping) for the first and last frame. It then linearly
interpolates the two boxes for other frames.
Args:
images: Images to perform resizing and cropping.
target_height: Desired height after cropping.
target_width: Desired width after cropping.
scale: Scale range of Inception-style area based random resizing.
ratio: Aspect ratio range of Inception-style area based random resizing.
"""
t = images.shape[1]
height = images.shape[2]
width = images.shape[3]
i, j, h, w = _get_param_spatial_crop(scale, ratio, height, width)
i_, j_, h_, w_ = _get_param_spatial_crop(scale, ratio, height, width)
i_s = [int(i) for i in torch.linspace(i, i_, steps=t).tolist()]
j_s = [int(i) for i in torch.linspace(j, j_, steps=t).tolist()]
h_s = [int(i) for i in torch.linspace(h, h_, steps=t).tolist()]
w_s = [int(i) for i in torch.linspace(w, w_, steps=t).tolist()]
out = torch.zeros((3, t, target_height, target_width))
for ind in range(t):
out[:, ind : ind + 1, :, :] = torch.nn.functional.interpolate(
images[
:,
ind : ind + 1,
i_s[ind] : i_s[ind] + h_s[ind],
j_s[ind] : j_s[ind] + w_s[ind],
],
size=(target_height, target_width),
mode="bilinear",
align_corners=False,
)
return out
def create_random_augment(
input_size,
auto_augment=None,
interpolation="bilinear",
):
"""
Get video randaug transform.
Args:
input_size: The size of the input video in tuple.
auto_augment: Parameters for randaug. An example:
"rand-m7-n4-mstd0.5-inc1" (m is the magnitude and n is the number
of operations to apply).
interpolation: Interpolation method.
"""
if isinstance(input_size, tuple):
img_size = input_size[-2:]
else:
img_size = input_size
if auto_augment:
assert isinstance(auto_augment, str)
if isinstance(img_size, tuple):
img_size_min = min(img_size)
else:
img_size_min = img_size
aa_params = {"translate_const": int(img_size_min * 0.45)}
if interpolation and interpolation != "random":
aa_params["interpolation"] = _pil_interp(interpolation)
if auto_augment.startswith("rand"):
return transforms.Compose(
[rand_augment_transform(auto_augment, aa_params)]
)
raise NotImplementedError
def random_sized_crop_img(
im,
size,
jitter_scale=(0.08, 1.0),
jitter_aspect=(3.0 / 4.0, 4.0 / 3.0),
max_iter=10,
):
"""
Performs Inception-style cropping (used for training).
"""
assert (
len(im.shape) == 3
), "Currently only support image for random_sized_crop"
h, w = im.shape[1:3]
i, j, h, w = _get_param_spatial_crop(
scale=jitter_scale,
ratio=jitter_aspect,
height=h,
width=w,
num_repeat=max_iter,
log_scale=False,
switch_hw=True,
)
cropped = im[:, i : i + h, j : j + w]
return torch.nn.functional.interpolate(
cropped.unsqueeze(0),
size=(size, size),
mode="bilinear",
align_corners=False,
).squeeze(0)
# The following code are modified based on timm lib, we will replace the following
# contents with dependency from PyTorchVideo.
# https://github.com/facebookresearch/pytorchvideo
class RandomResizedCropAndInterpolation:
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation="bilinear",
):
if isinstance(size, tuple):
self.size = size
else:
self.size = (size, size)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
print("range should be of kind (min, max)")
if interpolation == "random":
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = _pil_interp(interpolation)
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
area = img.size[0] * img.size[1]
for _ in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size[0] and h <= img.size[1]:
i = random.randint(0, img.size[1] - h)
j = random.randint(0, img.size[0] - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img.size[0] / img.size[1]
if in_ratio < min(ratio):
w = img.size[0]
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = img.size[1]
w = int(round(h * max(ratio)))
else: # whole image
w = img.size[0]
h = img.size[1]
i = (img.size[1] - h) // 2
j = (img.size[0] - w) // 2
return i, j, h, w
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = " ".join(
[_pil_interpolation_to_str[x] for x in self.interpolation]
)
else:
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + "(size={0}".format(self.size)
format_string += ", scale={0}".format(
tuple(round(s, 4) for s in self.scale)
)
format_string += ", ratio={0}".format(
tuple(round(r, 4) for r in self.ratio)
)
format_string += ", interpolation={0})".format(interpolate_str)
return format_string
def transforms_imagenet_train(
img_size=224,
scale=None,
ratio=None,
hflip=0.5,
vflip=0.0,
color_jitter=0.4,
auto_augment=None,
interpolation="random",
use_prefetcher=False,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
re_prob=0.0,
re_mode="const",
re_count=1,
re_num_splits=0,
separate=False,
):
"""
If separate==True, the transforms are returned as a tuple of 3 separate transforms
for use in a mixing dataset that passes
* all data through the first (primary) transform, called the 'clean' data
* a portion of the data through the secondary transform
* normalizes and converts the branches above with the third, final transform
"""
if isinstance(img_size, tuple):
img_size = img_size[-2:]
else:
img_size = img_size
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range
ratio = tuple(
ratio or (3.0 / 4.0, 4.0 / 3.0)
) # default imagenet ratio range
primary_tfl = [
RandomResizedCropAndInterpolation(
img_size, scale=scale, ratio=ratio, interpolation=interpolation
)
]
if hflip > 0.0:
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
if vflip > 0.0:
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]
secondary_tfl = []
if auto_augment:
assert isinstance(auto_augment, str)
if isinstance(img_size, tuple):
img_size_min = min(img_size)
else:
img_size_min = img_size
aa_params = dict(
translate_const=int(img_size_min * 0.45),
img_mean=tuple([min(255, round(255 * x)) for x in mean]),
)
if interpolation and interpolation != "random":
aa_params["interpolation"] = _pil_interp(interpolation)
if auto_augment.startswith("rand"):
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
elif auto_augment.startswith("augmix"):
raise NotImplementedError("Augmix not implemented")
else:
raise NotImplementedError("Auto aug not implemented")
elif color_jitter is not None:
# color jitter is enabled when not using AA
if isinstance(color_jitter, (list, tuple)):
# color jitter should be a 3-tuple/list if spec brightness/contrast/saturation
# or 4 if also augmenting hue
assert len(color_jitter) in (3, 4)
else:
# if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
color_jitter = (float(color_jitter),) * 3
secondary_tfl += [transforms.ColorJitter(*color_jitter)]
final_tfl = []
final_tfl += [
transforms.ToTensor(),
transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
]
if re_prob > 0.0:
final_tfl.append(
RandomErasing(
re_prob,
mode=re_mode,
max_count=re_count,
num_splits=re_num_splits,
device="cpu",
cube=False,
)
)
if separate:
return (
transforms.Compose(primary_tfl),
transforms.Compose(secondary_tfl),
transforms.Compose(final_tfl),
)
else:
return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)
############################################################################################################
############################################################################################################
class Compose(object):
"""Composes several transforms
Args:
transforms (list of ``Transform`` objects): list of transforms
to compose
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, clip):
for t in self.transforms:
clip = t(clip)
return clip
class RandomHorizontalFlip(object):
"""Horizontally flip the list of given images randomly
with a probability 0.5
"""
def __call__(self, clip):
"""
Args:
img (PIL.Image or numpy.ndarray): List of images to be cropped
in format (h, w, c) in numpy.ndarray
Returns:
PIL.Image or numpy.ndarray: Randomly flipped clip
"""
if random.random() < 0.5:
if isinstance(clip[0], np.ndarray):
return [np.fliplr(img) for img in clip]
elif isinstance(clip[0], PIL.Image.Image):
return [
img.transpose(PIL.Image.FLIP_LEFT_RIGHT) for img in clip
]
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
' but got list of {0}'.format(type(clip[0])))
return clip
class RandomResize(object):
"""Resizes a list of (H x W x C) numpy.ndarray to the final size
The larger the original image is, the more times it takes to
interpolate
Args:
interpolation (str): Can be one of 'nearest', 'bilinear'
defaults to nearest
size (tuple): (widht, height)
"""
def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'):
self.ratio = ratio
self.interpolation = interpolation
def __call__(self, clip):
scaling_factor = random.uniform(self.ratio[0], self.ratio[1])
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
new_w = int(im_w * scaling_factor)
new_h = int(im_h * scaling_factor)
new_size = (new_w, new_h)
resized = FF.resize_clip(
clip, new_size, interpolation=self.interpolation)
return resized
class Resize(object):
"""Resizes a list of (H x W x C) numpy.ndarray to the final size
The larger the original image is, the more times it takes to
interpolate
Args:
interpolation (str): Can be one of 'nearest', 'bilinear'
defaults to nearest
size (tuple): (widht, height)
"""
def __init__(self, size, interpolation='nearest'):
self.size = size
self.interpolation = interpolation
def __call__(self, clip):
resized = FF.resize_clip(
clip, self.size, interpolation=self.interpolation)
return resized
class RandomCrop(object):
"""Extract random crop at the same location for a list of images
Args:
size (sequence or int): Desired output size for the
crop in format (h, w)
"""