diff --git a/CHANGES.md b/CHANGES.md index 8862de7..97df969 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -5,13 +5,20 @@ Change history for MOST since 1.2 --------- +#### 10/25/23 + - Fix [issue #39][10] in which the value of `mdi.Delta_T`, the number of + hours represented by each period, was not being accounted for in most + of the terms in the objective function. + *Thanks to Stefano Nicolin.* + #### 10/4/23 - Fix [issue #37][9] which caused a fatal error in storage input checks with multiple storage units under some circumstances. *Thanks to Keir Steegstra.* #### 2/3/23 - - Remove extra column in ExpectedRampCost and ignore for single period. + - Remove extra column in mdo.results.ExpectedRampCost and ignore for + single period. Version 1.2 - *Dec 13, 2022* @@ -310,3 +317,4 @@ Version 1.0 - *Jun 1, 2016* [7]: https://arxiv.org/abs/2204.08140 [8]: https://github.com/MATPOWER/most/issues/29 [9]: https://github.com/MATPOWER/most/issues/37 +[10]: https://github.com/MATPOWER/most/issues/39 diff --git a/docs/src/MOST-manual/MOST-manual.tex b/docs/src/MOST-manual/MOST-manual.tex index 7425296..90c93ea 100644 --- a/docs/src/MOST-manual/MOST-manual.tex +++ b/docs/src/MOST-manual/MOST-manual.tex @@ -858,30 +858,30 @@ \subsubsection{Objective Function} \item[--] expected cost of active power dispatch and redispatch \end{itemize} \begin{align} -f_p(p,p_+,p_-) &= \sum_{t\in T} \sum_{j\in J^t} \sum_{k\in K^{tj}} \psi_\alpha^{tjk} \sum_{i\in I^{tjk}} +f_p(p,p_+,p_-) &= \Delta \cdot \sum_{t\in T} \sum_{j\in J^t} \sum_{k\in K^{tj}} \psi_\alpha^{tjk} \sum_{i\in I^{tjk}} \Bigl[\widetilde{C}_P^{ti}(p^{tijk}) + C_{P+}^{ti}(p_+^{tijk}) + C_{P-}^{ti}(p_-^{tijk}) \Bigr] \label{eq:most_energy_cost} \end{align} \begin{itemize} \item[--] cost of zonal reserves\footnotemark[\value{footnote}] \begin{equation} -f_z(r_z) = \sum_{t\in T} \sum_{j\in J^t} \sum_{k\in K^{tj}} \psi_\alpha^{tjk} \sum_{i\in I^{tjk}} C_z^{ti}(r_z^{tijk}) +f_z(r_z) = \Delta \cdot \sum_{t\in T} \sum_{j\in J^t} \sum_{k\in K^{tj}} \psi_\alpha^{tjk} \sum_{i\in I^{tjk}} C_z^{ti}(r_z^{tijk}) \label{eq:most_zres_cost} \end{equation} \item[--] cost of endogenous contingency reserves\footnotemark[\value{footnote}] \begin{equation} -f_r(r_+, r_-) = \sum_{t\in T} \gamma^t \sum_{i\in I^t} \left[C_{R+}^{ti}(r_+^{ti}) + C_{R-}^{ti}(r_-^{ti}) \right] +f_r(r_+, r_-) = \Delta \cdot \sum_{t\in T} \gamma^t \sum_{i\in I^t} \left[C_{R+}^{ti}(r_+^{ti}) + C_{R-}^{ti}(r_-^{ti}) \right] \label{eq:most_cres_cost} \end{equation} \item[--] expected cost of load-following ramping (wear and tear) \begin{equation} -f_\delta(p) = \sum_{t\in T} \! \gamma^t \!\!\!\!\! \sum_{\begin{aligned}\scriptstyle j_1 &\scriptstyle \in J^{t-1}\\[-6pt] \scriptstyle j_2 &\scriptstyle \in J^t\end{aligned}} \!\!\!\!\! +f_\delta(p) = \Delta \cdot \sum_{t\in T} \! \gamma^t \!\!\!\!\! \sum_{\begin{aligned}\scriptstyle j_1 &\scriptstyle \in J^{t-1}\\[-6pt] \scriptstyle j_2 &\scriptstyle \in J^t\end{aligned}} \!\!\!\!\! \phi^{t j_2 j_1} \!\!\!\! \sum_{i\in I^{tj_2 0}} \!\!\! C_\delta^i(p^{tij_20} - p^{(t-1)ij_10}) \label{eq:rampcost} \end{equation} \item[--] cost of load-following ramp reserves \begin{equation} -f_{\rm lf}(\delta_+, \delta_-) = \sum_{t\in T} \gamma^t \sum_{i\in I^t} \left[C_{\delta+}^{ti}(\delta_+^{ti}) + C_{\delta-}^{ti}(\delta_-^{ti}) \right] +f_{\rm lf}(\delta_+, \delta_-) = \Delta \cdot \sum_{t\in T} \gamma^t \sum_{i\in I^t} \left[C_{\delta+}^{ti}(\delta_+^{ti}) + C_{\delta-}^{ti}(\delta_-^{ti}) \right] \label{eq:most_rampres_cost} \end{equation} \item[--] cost of initial stored energy and value (since it is negative) of expected leftover stored energy in terminal states @@ -890,7 +890,7 @@ \subsubsection{Objective Function} \end{equation} \item[--] no load, startup and shutdown costs \begin{equation} -f_{\rm uc}(u,v,w) = \sum_{t\in T} \gamma^t \sum_{i\in I^t} \Bigl( C_P^{ti}(0) u^{ti} + C_v^{ti} v^{ti} + C_w^{ti} w^{ti} \Bigr) +f_{\rm uc}(u,v,w) = \sum_{t\in T} \gamma^t \sum_{i\in I^t} \Bigl( \Delta \cdot C_P^{ti}(0) u^{ti} + C_v^{ti} v^{ti} + C_w^{ti} w^{ti} \Bigr) \end{equation} \end{itemize} @@ -1469,7 +1469,7 @@ \subsubsection{{\tt xgd} -- Extra Generator Data ({\tt xGenData})} \item [*] {All fields are $n_g \times 1$ vectors of per-generator values.} \item [\dag] {These are defaults provided by \code{loadxgendata}. If \code{gen} is provided, either directly or as the \code{gen} field of \mpc{}, then \code{P = gen(:, PG)}, \code{C = gen(:, GEN\_STATUS)} and \code{R = 2*(gen(:, PMAX) - MIN(0, gen(:, PMIN)))}, otherwise $\code{C}~=~1$, $\code{R}~=~0$ and no default is provided for \code{P} (corresponding field is not optional).} \item [\dag\dag] {Ramping costs/restrictions from the initial dispatch at $t=0$ are ignored for single-period problems.} - \item [\ddag] {Each of these costs $C(\cdot)$ is presented in the formulation as a general function, but is implmented as a simple linear function of the form $C(x) = a x$, where the linear coefficient being supplied is $a$. The only exception is the ramping cost, which has the quadratic form $C_\delta^i(x) = a x^2$.} + \item [\ddag] {Each of these costs $C(\cdot)$ is presented in the formulation as a general function, but is implmented as a simple linear function of the form $C(x) = a x$, where the linear coefficient being supplied is $a$. The only exception is the ramping cost, which has the quadratic form $C_\delta^i(x) = \frac{1}{\Delta^2} a x^2$.} \item [\S] {Requires that \code{CommitKey} be present and non-empty.} \item [\P] {Sign is based on \code{C}\tnote{\dag}, i.e. $+\infty$ for \code{C} = 1, $-\infty$ for \code{C} = 0.} \end{tablenotes} @@ -1722,7 +1722,7 @@ \subsubsection{Input Data} \code{mpc} & I & & base system data, standard \matpower{} case struct\tnote{\ddag}, with \baseMVA{}, \bus{}, \gen{}, \branch{} and \gencost{} fields \\ \code{offer(t)} & I & & struct with offer data for period~$t$, see Table~\ref{tab:md_inputoffer} for details of sub-fields \\ \code{OpenEnded} & I & 1 & ignore terminal dispatch ramp constraints, \emph{deprecated} \\ -\code{RampWearCostCoeff(i,t)} & I & 0 & $n_g \times n_t$, cost of ramping of generator~$i$ from period~$t-1$ to $t$, coefficient $C_\delta^i$ for square of dispatch difference in \eqref{eq:rampcost} \\ +\code{RampWearCostCoeff(i,t)} & I & 0 & $n_g \times n_t$, cost of ramping of generator~$i$ from period~$t-1$ to $t$, coefficient $C_\delta^i$ for square of dispatch difference in \eqref{eq:rampcost}\tnote{\S} \\ \code{Storage} & B & & struct with parameters for storage units, see Table~\ref{tab:md_inputstorage} for the input fields \\ \code{TerminalPg(i)} & I & & $n_g \times 1$, injection of generator~$i$ at $t = n_t$, \emph{deprecated, untested} \\ \code{tstep(t)} & B & & $n_t \times 1$ struct of parameters related to period~$t$ \\ @@ -1736,6 +1736,7 @@ \subsubsection{Input Data} \item [*] {I = input, O = output, B = both, opt = taken from \matpower{} options.} \item [\dag] {See Section~\ref{sec:contab} for details. Note that, while \code{loadmd} assigns the same \code{contab} to all $t$ and $j$, it is possible to set different \code{contab} values manually and they will be respected by \code{most}.} \item [\ddag] {See Appendix~\ref{MUM-app:caseformat} in the \mum{} for details.} + \item [\S] {More precisely, $C_\delta^i(x) = \frac{1}{\Delta^2} a x^2$}, where $a$ is the corresponding value of \code{RampWearCostCoeff(i,t)}. \end{tablenotes} \end{threeparttable} \end{table} @@ -3441,6 +3442,7 @@ \subsubsection*{Changes} \subsubsection*{Bugs Fixed} \begin{itemize} +\item Fix issue \#39 in which the value of \code{mdi.Delta\_T}, the number of hours represented by each period, was not being accounted for in most of the terms in the objective function. \emph{Thanks to Stefano Nicolin.} \item Fix issue \#37 which caused a fatal error in storage input checks with multiple storage units under some circumstances. \emph{Thanks to Keir Steegstra.} \end{itemize} diff --git a/lib/most.m b/lib/most.m index 0cba263..c733079 100644 --- a/lib/most.m +++ b/lib/most.m @@ -56,9 +56,8 @@ % MDO MOST data structure, output % (see MOST User's Manual for details) - % MOST -% Copyright (c) 2010-2022, Power Systems Engineering Research Center (PSERC) +% Copyright (c) 2010-2023, Power Systems Engineering Research Center (PSERC) % by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Nacional de Colombia % and Ray Zimmerman, PSERC Cornell % @@ -82,7 +81,7 @@ fprintf( ' ----- Built on MATPOWER -----\n'); fprintf( ' by Carlos E. Murillo-Sanchez, Universidad Nacional de Colombia--Manizales\n'); fprintf( ' and Ray D. Zimmerman, Cornell University\n'); - fprintf( ' (c) 2012-2022 Power Systems Engineering Research Center (PSERC) \n'); + fprintf( ' (c) 2012-2023 Power Systems Engineering Research Center (PSERC) \n'); fprintf( '=============================================================================\n'); end @@ -509,7 +508,7 @@ for k = 1:mdi.idx.nc(t,j)+1 mpc = mdi.flow(t,j,k).mpc; c00tjk = totcost(mpc.gencost, zeros(ng,1)); - mdi.UC.c00(:, t) = mdi.UC.c00(:, t) + mdi.CostWeightsAdj(k, j, t) * c00tjk; + mdi.UC.c00(:, t) = mdi.UC.c00(:, t) + mdi.Delta_T * mdi.CostWeightsAdj(k, j, t) * c00tjk; c0col = COST + mpc.gencost(:,NCOST) - 1; ipoly = find(mpc.gencost(:, MODEL) == POLYNOMIAL); ipwl = find(mpc.gencost(:, MODEL) == PW_LINEAR); @@ -1723,19 +1722,19 @@ om.init_indexed_name('qdc', 'RampWear', {nt+1, nj_max, nj_max}); end for j = 1:mdi.idx.nj(1) - w = mdi.tstep(1).TransMat(j,1); % the probability of going from initial state to jth - Q = spdiags(w * baseMVA^2 * mdi.RampWearCostCoeff(:,1), 0, ng, ng); + w = mdi.Delta_T * mdi.tstep(1).TransMat(j,1); % the probability of going from initial state to jth + Q = spdiags(w * baseMVA^2 * mdi.RampWearCostCoeff(:,1) / mdi.Delta_T^2, 0, ng, ng); c = -w * baseMVA * mdi.RampWearCostCoeff(:,1) .* mdi.InitialPg; - vs = struct('name', {'Pg'}, 'idx', {{1,j,1}}); k0 = w * 0.5 * mdi.RampWearCostCoeff(:,1)' * mdi.InitialPg.^2; + vs = struct('name', {'Pg'}, 'idx', {{1,j,1}}); om.add_quad_cost('RampWear', {1,j,1}, Q, c, k0, vs); end % Then the remaining periods for t = 2:nt for j2 = 1:mdi.idx.nj(t) for j1 = 1:mdi.idx.nj(t-1) - w = mdi.tstep(t).TransMat(j2,j1) * mdi.CostWeights(1, j1, t-1); - h = w * baseMVA^2 * mdi.RampWearCostCoeff(:,t); + w = mdi.Delta_T * mdi.tstep(t).TransMat(j2,j1) * mdi.CostWeights(1, j1, t-1); + h = w * baseMVA^2 * mdi.RampWearCostCoeff(:,t) / mdi.Delta_T^2; i = (1:ng)'; j = ng+(1:ng)'; Q = sparse([i;j;i;j], [i;i;j;j], [h;-h;-h;h], 2*ng, 2*ng); @@ -1750,11 +1749,11 @@ % that makes sense for nt+1; all other fields in mdi.tstep(nt+1) can be empty. if ~mdi.OpenEnded for j = 1:mdi.idx.nj(nt) - w = mdi.tstep(nt+1).TransMat(1, j) * mdi.CostWeights(1, j, nt); - Q = spdiags(w * baseMVA^2 * mdi.RampWearCostCoeff(:,nt+1), 0, ng, ng); + w = mdi.Delta_T * mdi.tstep(nt+1).TransMat(1, j) * mdi.CostWeights(1, j, nt); + Q = spdiags(w * baseMVA^2 * mdi.RampWearCostCoeff(:,nt+1) / mdi.Delta_T^2, 0, ng, ng); c = -w * baseMVA * mdi.RampWearCostCoeff(:,nt+1) .* mdi.TerminalPg; - vs = struct('name', {'Pg'}, 'idx', {{nt,j,1}}); k0 = w * 0.5 * mdi.RampWearCostCoeff(:,nt+1)' * mdi.TerminalPg.^2; + vs = struct('name', {'Pg'}, 'idx', {{nt,j,1}}); om.add_quad_cost('RampWear', {nt+1,j,1}, Q, c, k0, vs); end end @@ -1773,7 +1772,7 @@ for t = 1:nt for j = 1:mdi.idx.nj(t) for k = 1:mdi.idx.nc(t,j)+1 - w = mdi.CostWeightsAdj(k,j,t); %% NOTE (k,j,t) order !!! + w = mdi.Delta_T * mdi.CostWeightsAdj(k,j,t); %% NOTE (k,j,t) order !!! % weighted polynomial energy costs for committed units gc = mdi.flow(t,j,k).mpc.gencost; @@ -1841,10 +1840,10 @@ end % contingency reserve costs - c = baseMVA * mdi.StepProb(t) * mdi.offer(t).PositiveActiveReservePrice(:); + c = mdi.Delta_T * baseMVA * mdi.StepProb(t) * mdi.offer(t).PositiveActiveReservePrice(:); vs = struct('name', {'Rpp'}, 'idx', {{t}}); om.add_quad_cost('Crpp', {t}, [], c, 0, vs); - c = baseMVA * mdi.StepProb(t) * mdi.offer(t).NegativeActiveReservePrice(:); + c = mdi.Delta_T * baseMVA * mdi.StepProb(t) * mdi.offer(t).NegativeActiveReservePrice(:); vs = struct('name', {'Rpm'}, 'idx', {{t}}); om.add_quad_cost('Crpm', {t}, [], c, 0, vs); end @@ -1852,10 +1851,10 @@ om.init_indexed_name('qdc', 'Crrp', {mdi.idx.ntramp}); om.init_indexed_name('qdc', 'Crrm', {mdi.idx.ntramp}); for t = 1:mdi.idx.ntramp - c = baseMVA * mdi.StepProb(t) * mdi.offer(t).PositiveLoadFollowReservePrice(:); + c = mdi.Delta_T * baseMVA * mdi.StepProb(t) * mdi.offer(t).PositiveLoadFollowReservePrice(:); vs = struct('name', {'Rrp'}, 'idx', {{t}}); om.add_quad_cost('Crrp', {t}, [], c, 0, vs); - c = baseMVA * mdi.StepProb(t) * mdi.offer(t).NegativeLoadFollowReservePrice(:); + c = mdi.Delta_T * baseMVA * mdi.StepProb(t) * mdi.offer(t).NegativeLoadFollowReservePrice(:); vs = struct('name', {'Rrm'}, 'idx', {{t}}); om.add_quad_cost('Crrm', {t}, [], c, 0, vs); end diff --git a/lib/mostver.m b/lib/mostver.m index 28b6e67..2ea3fd3 100644 --- a/lib/mostver.m +++ b/lib/mostver.m @@ -19,7 +19,7 @@ v = struct( 'Name', 'MOST', ... 'Version', '1.2+', ... 'Release', '', ... - 'Date', '30-May-2023' ); + 'Date', '25-Oct-2023' ); if nargout > 0 if nargin > 0 rv = v; diff --git a/lib/t/t_most_uc.m b/lib/t/t_most_uc.m index f077acd..0a8507a 100644 --- a/lib/t/t_most_uc.m +++ b/lib/t/t_most_uc.m @@ -43,7 +43,7 @@ function t_most_uc(quiet, create_plots, create_pdfs, savedir) % fcn = {'gurobi'}; % solvers = {'MOSEK'}; % fcn = {'mosek'}; -ntests = 68; +ntests = 69; t_begin(ntests*length(solvers), quiet); if quiet @@ -235,6 +235,10 @@ function t_most_uc(quiet, create_plots, create_pdfs, savedir) plot_case('+ DC Network', mdo, ms, 500, 100, savedir, pp, fname); end % keyboard; + mdi.Delta_T = 2; + mdo = most(mdi, mpopt); + ms = most_summary(mdo); + t_is(ms.f, 2 * ex.f, 8, [t '(Delta_T = 2) : f']); t = sprintf('%s : + startup/shutdown costs : ', solvers{s}); if mpopt.out.all