forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quick_eval_cifar.py
164 lines (130 loc) · 5.52 KB
/
quick_eval_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2019 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Single file script for doing a quick evaluation of a model.
This script is called by run.sh.
Usage:
user@host:/path/to/deepmind_research$ unsupervised_adversarial_training/run.sh
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from absl import app
from absl import flags
import cleverhans
from cleverhans import attacks
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
UAT_HUB_URL = ('https://tfhub.dev/deepmind/unsupervised-adversarial-training/'
'cifar10/wrn_106/1')
FLAGS = flags.FLAGS
flags.DEFINE_enum('attack_fn_name', 'fgsm', ['fgsm', 'none'],
'Name of the attack method to use.')
flags.DEFINE_float('epsilon_attack', 8.0 / 255,
'Maximum allowable perturbation size, between 0 and 1.')
flags.DEFINE_integer('num_steps', 20, 'Number of attack iterations.')
flags.DEFINE_integer('num_batches', 100, 'Number of batches to evaluate.')
flags.DEFINE_integer('batch_size', 32, 'Batch size.')
flags.DEFINE_integer('skip_batches', 0,
'Controls index of start image. This can be used to '
'evaluate the model on different subsets of the test set.')
flags.DEFINE_float('learning_rate', 0.003, 'Attack optimizer learning rate.')
def _top_1_accuracy(logits, labels):
return tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32))
def make_classifier():
model = hub.Module(UAT_HUB_URL)
def classifier(x):
x = _cifar_meanstd_normalize(x)
model_input = dict(x=x, decay_rate=0.1, prefix='default')
return model(model_input)
return classifier
def eval_cifar():
"""Evaluate an adversarially trained model."""
attack_fn_name = FLAGS.attack_fn_name
total_batches = FLAGS.num_batches
batch_size = FLAGS.batch_size
# Note that a `classifier` is a function mapping [0,1]-scaled image Tensors
# to a logit Tensor. In particular, it includes *both* the preprocessing
# function, and the neural network.
classifier = make_classifier()
cleverhans_model = cleverhans.model.CallableModelWrapper(classifier, 'logits')
_, data_test = tf.keras.datasets.cifar10.load_data()
data = _build_dataset(data_test, batch_size=batch_size, shuffle=False)
# Generate adversarial images.
if attack_fn_name == 'fgsm':
attack = attacks.MadryEtAl(cleverhans_model)
num_cifar_classes = 10
adv_x = attack.generate(data.image,
eps=FLAGS.epsilon_attack,
eps_iter=FLAGS.learning_rate,
nb_iter=FLAGS.num_steps,
y=tf.one_hot(data.label, depth=num_cifar_classes))
elif attack_fn_name == 'none':
adv_x = data.image
logits = classifier(adv_x)
probs = tf.nn.softmax(logits)
adv_acc = _top_1_accuracy(logits, data.label)
with tf.train.SingularMonitoredSession() as sess:
total_acc = 0.
for _ in range(FLAGS.skip_batches):
sess.run(data.image)
for _ in range(total_batches):
_, _, adv_acc_val = sess.run([probs, data.label, adv_acc])
total_acc += adv_acc_val
print('Batch accuracy: {}'.format(adv_acc_val))
print('Total accuracy against {}: {}'.format(
FLAGS.attack_fn_name, total_acc / total_batches))
########## Utilities ##########
# Defines a dataset sample."""
Sample = collections.namedtuple('Sample', ['image', 'label'])
def _build_dataset(raw_data, batch_size=32, shuffle=False):
"""Builds a dataset from raw NumPy tensors.
Args:
raw_data: Pair (images, labels) of numpy arrays. `images` should have shape
(N, H, W, C) with values in [0, 255], and `labels` should have shape
(N,) or (N, 1) indicating class indices.
batch_size: int, batch size
shuffle: bool, whether to shuffle the data (default: True).
Returns:
(image_tensor, label_tensor), which iterate over the dataset, which are
(batch_size, H, W, C) tf.float32 and (batch_size,) tf.int32 Tensors
respectively
"""
images, labels = raw_data
labels = np.squeeze(labels)
samples = Sample(images.astype(np.float32) / 255., labels.astype(np.int64))
data = tf.data.Dataset.from_tensor_slices(samples)
if shuffle:
data = data.shuffle(1000)
return data.repeat().batch(batch_size).make_one_shot_iterator().get_next()
def _cifar_meanstd_normalize(image):
"""Mean + stddev whitening for CIFAR-10 used in ResNets.
Args:
image: Numpy array or TF Tensor, with values in [0, 255]
Returns:
image: Numpy array or TF Tensor, shifted and scaled by mean/stdev on
CIFAR-10 dataset.
"""
# Channel-wise means and std devs calculated from the CIFAR-10 training set
cifar_means = [125.3, 123.0, 113.9]
cifar_devs = [63.0, 62.1, 66.7]
rescaled_means = [x / 255. for x in cifar_means]
rescaled_devs = [x / 255. for x in cifar_devs]
image = (image - rescaled_means) / rescaled_devs
return image
def main(unused_argv):
eval_cifar()
if __name__ == '__main__':
app.run(main)