forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_cloth.py
66 lines (54 loc) · 2.09 KB
/
plot_cloth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Plots a cloth trajectory rollout."""
import pickle
from absl import app
from absl import flags
from matplotlib import animation
import matplotlib.pyplot as plt
FLAGS = flags.FLAGS
flags.DEFINE_string('rollout_path', None, 'Path to rollout pickle file')
def main(unused_argv):
with open(FLAGS.rollout_path, 'rb') as fp:
rollout_data = pickle.load(fp)
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
skip = 10
num_steps = rollout_data[0]['gt_pos'].shape[0]
num_frames = len(rollout_data) * num_steps // skip
# compute bounds
bounds = []
for trajectory in rollout_data:
bb_min = trajectory['gt_pos'].min(axis=(0, 1))
bb_max = trajectory['gt_pos'].max(axis=(0, 1))
bounds.append((bb_min, bb_max))
def animate(num):
step = (num*skip) % num_steps
traj = (num*skip) // num_steps
ax.cla()
bound = bounds[traj]
ax.set_xlim([bound[0][0], bound[1][0]])
ax.set_ylim([bound[0][1], bound[1][1]])
ax.set_zlim([bound[0][2], bound[1][2]])
pos = rollout_data[traj]['pred_pos'][step]
faces = rollout_data[traj]['faces'][step]
ax.plot_trisurf(pos[:, 0], pos[:, 1], faces, pos[:, 2], shade=True)
ax.set_title('Trajectory %d Step %d' % (traj, step))
return fig,
_ = animation.FuncAnimation(fig, animate, frames=num_frames, interval=100)
plt.show(block=True)
if __name__ == '__main__':
app.run(main)