forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
two_dim_resnet.py
201 lines (179 loc) · 6.02 KB
/
two_dim_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""2D Resnet."""
from absl import logging
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from alphafold_casp13 import two_dim_convnet
def make_sep_res_layer(
input_node,
in_channels,
out_channels,
layer_name,
filter_size,
filter_size_2=None,
batch_norm=False,
is_training=True,
divide_channels_by=2,
atrou_rate=1,
channel_multiplier=0,
data_format='NHWC',
stddev=0.01,
dropout_keep_prob=1.0):
"""A separable resnet block."""
with tf.name_scope(layer_name):
input_times_almost_1 = input_node
h_conv = input_times_almost_1
if batch_norm:
h_conv = two_dim_convnet.batch_norm_layer(
h_conv, layer_name=layer_name, is_training=is_training,
data_format=data_format)
h_conv = tf.nn.elu(h_conv)
if filter_size_2 is None:
filter_size_2 = filter_size
# 1x1 with half size
h_conv = two_dim_convnet.make_conv_layer(
h_conv,
in_channels=in_channels,
out_channels=in_channels / divide_channels_by,
layer_name=layer_name + '_1x1h',
filter_size=1,
filter_size_2=1,
non_linearity=True,
batch_norm=batch_norm,
is_training=is_training,
data_format=data_format,
stddev=stddev)
# 3x3 with half size
if channel_multiplier == 0:
h_conv = two_dim_convnet.make_conv_layer(
h_conv,
in_channels=in_channels / divide_channels_by,
out_channels=in_channels / divide_channels_by,
layer_name=layer_name + '_%dx%dh' % (filter_size, filter_size_2),
filter_size=filter_size,
filter_size_2=filter_size_2,
non_linearity=True,
batch_norm=batch_norm,
is_training=is_training,
atrou_rate=atrou_rate,
data_format=data_format,
stddev=stddev)
else:
# We use separable convolution for 3x3
h_conv = two_dim_convnet.make_conv_sep2d_layer(
h_conv,
in_channels=in_channels / divide_channels_by,
channel_multiplier=channel_multiplier,
out_channels=in_channels / divide_channels_by,
layer_name=layer_name + '_sep%dx%dh' % (filter_size, filter_size_2),
filter_size=filter_size,
filter_size_2=filter_size_2,
batch_norm=batch_norm,
is_training=is_training,
atrou_rate=atrou_rate,
data_format=data_format,
stddev=stddev)
# 1x1 back to normal size without relu
h_conv = two_dim_convnet.make_conv_layer(
h_conv,
in_channels=in_channels / divide_channels_by,
out_channels=out_channels,
layer_name=layer_name + '_1x1',
filter_size=1,
filter_size_2=1,
non_linearity=False,
batch_norm=False,
is_training=is_training,
data_format=data_format,
stddev=stddev)
if dropout_keep_prob < 1.0:
logging.info('dropout keep prob %f', dropout_keep_prob)
h_conv = tf.nn.dropout(h_conv, keep_prob=dropout_keep_prob)
return h_conv + input_times_almost_1
def make_two_dim_resnet(
input_node,
num_residues=50,
num_features=40,
num_predictions=1,
num_channels=32,
num_layers=2,
filter_size=3,
filter_size_2=None,
final_non_linearity=False,
name_prefix='',
fancy=True,
batch_norm=False,
is_training=False,
atrou_rates=None,
channel_multiplier=0,
divide_channels_by=2,
resize_features_with_1x1=False,
data_format='NHWC',
stddev=0.01,
dropout_keep_prob=1.0):
"""Two dim resnet towers."""
del num_residues # Unused.
if atrou_rates is None:
atrou_rates = [1]
if not fancy:
raise ValueError('non fancy deprecated')
logging.info('atrou rates %s', atrou_rates)
logging.info('name prefix %s', name_prefix)
x_image = input_node
previous_layer = x_image
non_linearity = True
for i_layer in range(num_layers):
in_channels = num_channels
out_channels = num_channels
curr_atrou_rate = atrou_rates[i_layer % len(atrou_rates)]
if i_layer == 0:
in_channels = num_features
if i_layer == num_layers - 1:
out_channels = num_predictions
non_linearity = final_non_linearity
if i_layer == 0 or i_layer == num_layers - 1:
layer_name = name_prefix + 'conv%d' % (i_layer + 1)
initial_filter_size = filter_size
if resize_features_with_1x1:
initial_filter_size = 1
previous_layer = two_dim_convnet.make_conv_layer(
input_node=previous_layer,
in_channels=in_channels,
out_channels=out_channels,
layer_name=layer_name,
filter_size=initial_filter_size,
filter_size_2=filter_size_2,
non_linearity=non_linearity,
atrou_rate=curr_atrou_rate,
data_format=data_format,
stddev=stddev)
else:
layer_name = name_prefix + 'res%d' % (i_layer + 1)
previous_layer = make_sep_res_layer(
input_node=previous_layer,
in_channels=in_channels,
out_channels=out_channels,
layer_name=layer_name,
filter_size=filter_size,
filter_size_2=filter_size_2,
batch_norm=batch_norm,
is_training=is_training,
atrou_rate=curr_atrou_rate,
channel_multiplier=channel_multiplier,
divide_channels_by=divide_channels_by,
data_format=data_format,
stddev=stddev,
dropout_keep_prob=dropout_keep_prob)
y = previous_layer
return y