forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
two_dim_convnet.py
137 lines (118 loc) · 4.51 KB
/
two_dim_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Two dimensional convolutional neural net layers."""
from absl import logging
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
def weight_variable(shape, stddev=0.01):
"""Returns the weight variable."""
logging.vlog(1, 'weight init for shape %s', str(shape))
return tf.get_variable(
'w', shape, initializer=tf.random_normal_initializer(stddev=stddev))
def bias_variable(shape):
return tf.get_variable(
'b', shape, initializer=tf.zeros_initializer())
def conv2d(x, w, atrou_rate=1, data_format='NHWC'):
if atrou_rate > 1:
return tf.nn.convolution(
x,
w,
dilation_rate=[atrou_rate] * 2,
padding='SAME',
data_format=data_format)
else:
return tf.nn.conv2d(
x, w, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format)
def make_conv_sep2d_layer(input_node,
in_channels,
channel_multiplier,
out_channels,
layer_name,
filter_size,
filter_size_2=None,
batch_norm=False,
is_training=True,
atrou_rate=1,
data_format='NHWC',
stddev=0.01):
"""Use separable convolutions."""
if filter_size_2 is None:
filter_size_2 = filter_size
logging.vlog(1, 'layer %s in %d out %d chan mult %d', layer_name, in_channels,
out_channels, channel_multiplier)
with tf.variable_scope(layer_name):
with tf.variable_scope('depthwise'):
w_depthwise = weight_variable(
[filter_size, filter_size_2, in_channels, channel_multiplier],
stddev=stddev)
with tf.variable_scope('pointwise'):
w_pointwise = weight_variable(
[1, 1, in_channels * channel_multiplier, out_channels], stddev=stddev)
h_conv = tf.nn.separable_conv2d(
input_node,
w_depthwise,
w_pointwise,
padding='SAME',
strides=[1, 1, 1, 1],
rate=[atrou_rate, atrou_rate],
data_format=data_format)
if batch_norm:
h_conv = batch_norm_layer(
h_conv, layer_name=layer_name, is_training=is_training,
data_format=data_format)
else:
b_conv = bias_variable([out_channels])
h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format)
return h_conv
def batch_norm_layer(h_conv, layer_name, is_training=True, data_format='NCHW'):
"""Batch norm layer."""
logging.vlog(1, 'batch norm for layer %s', layer_name)
return tf.contrib.layers.batch_norm(
h_conv,
is_training=is_training,
fused=True,
decay=0.999,
scope=layer_name,
data_format=data_format)
def make_conv_layer(input_node,
in_channels,
out_channels,
layer_name,
filter_size,
filter_size_2=None,
non_linearity=True,
batch_norm=False,
is_training=True,
atrou_rate=1,
data_format='NHWC',
stddev=0.01):
"""Creates a convolution layer."""
if filter_size_2 is None:
filter_size_2 = filter_size
logging.vlog(
1, 'layer %s in %d out %d', layer_name, in_channels, out_channels)
with tf.variable_scope(layer_name):
w_conv = weight_variable(
[filter_size, filter_size_2, in_channels, out_channels], stddev=stddev)
h_conv = conv2d(
input_node, w_conv, atrou_rate=atrou_rate, data_format=data_format)
if batch_norm:
h_conv = batch_norm_layer(
h_conv, layer_name=layer_name, is_training=is_training,
data_format=data_format)
else:
b_conv = bias_variable([out_channels])
h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format)
if non_linearity:
h_conv = tf.nn.elu(h_conv)
return h_conv