-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathone_cycle_adamw.py
76 lines (58 loc) · 2.99 KB
/
one_cycle_adamw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import tensorflow as tf
import tensorflow_addons as tfa
class OneCycleAdamW(tfa.optimizers.AdamW):
def __init__(self, learning_rate, weight_decay, cycle_length):
self.one_cycle_schedule = OneCycleSchedule(cycle_length)
lr = lambda: learning_rate * self.one_cycle_schedule(self.iterations)
wd = lambda: weight_decay * self.one_cycle_schedule(self.iterations)
momentum = lambda: self.one_cycle_schedule.get_momentum(self.iterations)
super(OneCycleAdamW, self).__init__(learning_rate=lr, weight_decay=wd, beta_1=momentum, beta_2=0.99)
class OneCycleSchedule(tf.optimizers.schedules.LearningRateSchedule):
def __init__(self, cycle_length):
self._warmup_end_step = int(cycle_length * 0.1)
self._max_end_step = self._warmup_end_step + int(cycle_length * 0.4)
self._decay_end_step = self._max_end_step + int(cycle_length * 0.5)
def __call__(self, step):
def warmup():
# interpolate between initial and max lr
lr_factor = 0.1 + 0.9 * (step / self._warmup_end_step)
return lr_factor
def max_lr():
# remain at max for a period
return 1.0
def initial_decay():
# decay at half the speed we warmed up at
decay_step = step - self._max_end_step
lr_factor = 1 - 0.9 * (decay_step / (self._decay_end_step - self._max_end_step))
return lr_factor
def final_decay():
# then exponential decay from there
final_step = float(step - self._decay_end_step)
lr_factor = 0.1 * tf.math.pow(1 - 1 / self._decay_end_step, final_step)
return lr_factor
learning_rate = tf.case([(tf.less_equal(step, self._warmup_end_step), warmup),
(tf.less_equal(step, self._max_end_step), max_lr),
(tf.less_equal(step, self._decay_end_step), initial_decay)],
default=final_decay)
return learning_rate
def get_momentum(self, step):
def warmup():
# interpolate between initial and max momentum
momentum = 0.95 - 0.1 * (step / self._warmup_end_step)
return momentum
def max_lr():
# remain at min momentum while learning rate is maxed
return 0.85
def initial_decay():
# decay back up to max momentum
decay_step = step - self._max_end_step
momentum = 0.85 + 0.1 * (decay_step / (self._decay_end_step - self._max_end_step))
return momentum
def final_decay():
# remain at highest momentum
return 0.95
learning_rate = tf.case([(tf.less_equal(step, self._warmup_end_step), warmup),
(tf.less_equal(step, self._max_end_step), max_lr),
(tf.less_equal(step, self._decay_end_step), initial_decay)],
default=final_decay)
return learning_rate