-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCentralLimit.py
57 lines (48 loc) · 1.79 KB
/
CentralLimit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import random
import numpy as np
import matplotlib.pyplot as plt
def sample_and_plot(dist):
assert callable(dist)
# first plot a histogram of dist values
xs = [dist() for i in range(10000)]
plt.subplot(2, 1, 1)
plt.hist(xs, bins=100, color="blue")
plt.title("distribution")
# now get sample means
n_sample_means = 10000
n_per_sample = 1000
sample_means = []
for i in range(n_sample_means):
sample_xs = [dist() for j in range(n_per_sample)]
sample_mean = np.mean(sample_xs)
sample_means.append(sample_mean)
plt.subplot(2, 1, 2)
plt.hist(sample_means, bins=100, color="red")
plt.title("sample means from same distribution")
plt.show()
def get_dist():
typ = random.choice(["pareto", "uniform", "rayleigh", "poisson", "logistic", "zipf"])
print("chose distribution type: {}".format(typ))
if typ == "pareto":
a = random.uniform(1, 3)
# note that pareto alpha can be >=0, but if alpha <= 1, then the variance is infinite and CLT is no longer valid
return lambda a=a: np.random.pareto(a)
if typ == "uniform":
return lambda: np.random.uniform(0, 1)
if typ == "rayleigh":
scale = random.uniform(0, 2)
return lambda scale=scale: np.random.rayleigh(scale)
if typ == "poisson":
lam = random.uniform(0, 10)
return lambda lam=lam: np.random.poisson(lam)
if typ == "logistic":
loc = random.uniform(-10, 10)
scale = random.uniform(0, 5)
return lambda loc=loc, scale=scale: np.random.logistic(loc, scale)
if typ == "zipf":
a = random.uniform(1, 5)
return lambda a=a: np.random.zipf(a)
raise Exception("unknown distribution {}".format(typ))
if __name__ == "__main__":
dist = get_dist()
sample_and_plot(dist)