-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBasicGravitySimulation.py
236 lines (199 loc) · 9.38 KB
/
BasicGravitySimulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import distance_matrix
class Particle:
def __init__(self, mass, position, velocity):
self.mass = mass
self.position = position
self.velocity = velocity
self.color = self.get_color()
@staticmethod
def get_random_particle(max_xy=1, allow_negative_mass=True):
if allow_negative_mass:
mass_sign = random.choice([-1, 1])
else:
mass_sign = 1
mass = 10 * np.random.pareto(a=1) * mass_sign
position = np.random.uniform(-max_xy, max_xy, (2,))
# velocity = np.random.uniform(-1, 1, (2,))
velocity = np.zeros((2,))
return Particle(mass, position, velocity)
def get_color(self):
# if negative mass, make it more red
# if self.mass >= 0:
# red = random.uniform(0, 0.3)
# else:
# red = random.uniform(0.7, 1)
# green, blue = np.random.uniform(0, 1, (2,))
# return (red, green, blue)
return (1, 0, 0) if self.mass < 0 else (0, 0, 1)
def move(self, displacement):
self.position += displacement
def accelerate(self, acceleration):
self.velocity += acceleration
class UniverseState:
def __init__(self, particles):
self.particles = particles
self.min_x = 0
self.max_x = 0
self.min_y = 0
self.max_y = 0
@staticmethod
def get_random_initial_state(n_particles, allow_negative_mass=True):
particles = []
for i in range(n_particles):
p = Particle.get_random_particle(allow_negative_mass=allow_negative_mass)
particles.append(p)
return UniverseState(particles)
def get_masses(self):
return np.array([p.mass for p in self.particles])
def get_positions(self):
positions = np.array([p.position for p in self.particles])
xs = positions[:,0] # all points, first item in 2d vector for that point
ys = positions[:,1]
self.min_x = min(self.min_x, min(xs))
self.max_x = max(self.max_x, max(xs))
self.min_y = min(self.min_y, min(ys))
self.max_y = max(self.max_y, max(ys))
return positions
def get_distance_matrix(self):
if len(self.particles) == 0:
raise Exception("can't get distance matrix from zero particles")
x = self.get_positions()
n_particles, n_dim = x.shape
assert n_particles == len(self.particles)
assert n_dim == 2
m = distance_matrix(x, x)
assert m.shape == (n_particles, n_particles)
return m
def get_displacement_matrix(self):
positions = self.get_positions()
diff = lambda x, y: x-y
positions_broadcast = positions[:,None]
# about broadcasting, see e.g.:
# https://stackoverflow.com/questions/19602187/numpy-divide-each-row-by-a-vector-element
# https://stackoverflow.com/questions/42542154/user-defined-function-for-numpy-outer
# https://stackoverflow.com/questions/21226610/numpy-quirk-apply-function-to-all-pairs-of-two-1d-arrays-to-get-one-2d-array
displacements = diff(positions, positions_broadcast)
return displacements
def get_radial_vectors_between_particles(self):
displacements = self.get_displacement_matrix()
n = len(self.particles)
assert displacements.shape == (n, n, 2) # 2d displacement vector for each pair of particles
magnitudes = np.linalg.norm(displacements, axis=2) # do the norm along the number 2 axis (the one containing the x,y vector), for each point in the sub-array without that axis (here, the n by n grid of point pairs)
magnitudes_broadcast = magnitudes[:, :, None] # turns it from (n,n) to (n,n,1) so can do the division of (2,) vector by (1,) scalar for each pair in the (n,n) grid
radial_vectors = displacements / magnitudes_broadcast
radial_vectors = np.where(magnitudes[:,:,None] == 0, 0, radial_vectors)
return radial_vectors
def get_mass_product_matrix(self):
a = self.get_masses()
assert a.shape == (len(self.particles),), "{} particles but mass shape is {}".format(len(self.particles), a.shape)
return np.outer(a, a)
def move_particles(self):
for p in self.particles:
p.move(p.velocity)
def accelerate_particles(self, accelerations):
for p, a in zip(self.particles, accelerations):
p.accelerate(a)
def get_accelerations(self, gravity_power=2, big_g=1e-3):
distances = self.get_distance_matrix()
radial_vectors = self.get_radial_vectors_between_particles()
force_factors = 1 / (distances ** gravity_power)
# make a possibly interesting modification: force goes up dramatically again once objects are too far away, keeping the system bound
# distant_distance = 10
# get_distant_attractive_force = lambda d: np.maximum(0, d - distant_distance) ** 2 # have to use maximum, not max, to compare array and scalar and get array output
# force_factors += get_distant_attractive_force(distances)
mass_products = self.get_mass_product_matrix()
gravity_direction = -1 # -1 for attractive, 1 for repulsive
force_magnitudes = np.where(distances == 0, 0, big_g * mass_products * force_factors)
forces = force_magnitudes[:, :, None] * gravity_direction * radial_vectors # for each cell in (n,n) grid, multiply 2d vector by 1d magnitude, so need to broadcast (n,n) magnitude array to (n,n,1)
forces_per_particle = forces.sum(axis=0) # arr.sum(**kwargs) is same as np.sum(arr, **kwargs)
masses = self.get_masses()
accelerations = forces_per_particle / masses[:, None]
acceleration_magnitudes = np.linalg.norm(accelerations, axis=1)
debug = False
if debug:
print("\n\n-- getting accelerations")
print("positions:\n{}".format(self.get_positions()))
print("distances:\n{}".format(distances))
print("radial vectors:\n{}".format(radial_vectors))
print("force magnitudes:\n{}".format(force_magnitudes))
print("forces:\n{}".format(forces))
print("masses:\n{}".format(masses))
print("accelerations:\n{}".format(accelerations))
print("acceleration magnitudes:\n{}".format(acceleration_magnitudes))
# input("a")
return accelerations
def evolve(self, gravity_power=2, big_g=1e-3):
# I choose to change the velocities first, then step-move the particles with their new velocities
accelerations = self.get_accelerations(gravity_power=gravity_power, big_g=big_g)
self.accelerate_particles(accelerations)
self.move_particles()
n = len(self.particles)
assert n > 0
# get rid of ones that are going too far away
self.prune(min_x=-10, max_x=10, min_y=-10, max_y=10)
self.add_new_particles(n)
def prune(self, min_x, max_x, min_y, max_y):
particles = []
for p in self.particles:
x, y = p.position
if min_x <= x <= max_x and min_y <= y <= max_y:
# keep it, it's within range
particles.append(p)
self.particles = particles
def add_new_particles(self, n_total_to_achieve):
n = len(self.particles)
n_to_make = n_total_to_achieve - n
if n_to_make <= 0:
return
new_particles = [Particle.get_random_particle(max_xy=10) for i in range(n_to_make)]
self.particles += new_particles
assert len(self.particles) == n_total_to_achieve
def plot(self, restrict_to_original_box=False, restrict_to_record_box=False):
positions = self.get_positions()
masses = self.get_masses()
point_sizes = np.maximum(5, abs(masses) ** (2/3)) # point size is area of the dot on the plot, not radius
colors = [p.color for p in self.particles]
plt.scatter(*positions.T, s=point_sizes, c=colors)
if restrict_to_original_box:
assert not restrict_to_record_box
plt.xlim(-1, 1)
plt.ylim(-1, 1)
elif restrict_to_record_box:
assert not restrict_to_original_box
plt.xlim(self.min_x, self.max_x)
plt.ylim(self.min_y, self.max_y)
if __name__ == "__main__":
plt.ion()
fignum = plt.gcf().number # use to determine if user has closed plot
n_particles = 2
allow_negative_mass = False
gravity_power = 1/3 # 2 is normal (1/r^p)
big_g = 1e-6
plot_every_n_steps = 100
state = UniverseState.get_random_initial_state(n_particles, allow_negative_mass=allow_negative_mass)
step_i = 0
if n_particles == 2:
distances = []
while True:
if not plt.fignum_exists(fignum):
print("user closed plot; exiting")
break
state.evolve(gravity_power=gravity_power, big_g=big_g)
if n_particles == 2:
assert len(state.particles) == 2
distance = state.get_distance_matrix()[0, 1]
distances.append(distance)
if step_i % plot_every_n_steps == 0:
print("step {}".format(step_i))
plt.gcf().clear()
state.plot(restrict_to_original_box=False, restrict_to_record_box=True)
plt.draw()
plt.pause(0.001)
step_i += 1
plt.ioff() # how to close the ion()
if n_particles == 2:
plt.plot(distances)
plt.show()