-
Navigation menu > Storage > Browser
-
Create a Storage Bucket > Enter name as your GCP Project ID > Leave others to default > Create
-
Go to BigQuery > Select project ID > Create Dataset > Enter the name as
lab
and click on Create -
Run the following from the Cloud Shell:
gsutil cp gs://cloud-training/gsp323/lab.csv .
cat lab.csv
gsutil cp gs://cloud-training/gsp323/lab.schema .
cat lab.schema
-
Now, create a table inside the
lab
dataset and configure it as follows: [ {"type":"STRING","name":"guid"}, {"type":"BOOLEAN","name":"isActive"}, {"type":"STRING","name":"firstname"}, {"type":"STRING","name":"surname"}, {"type":"STRING","name":"company"}, {"type":"STRING","name":"email"}, {"type":"STRING","name":"phone"}, {"type":"STRING","name":"address"}, {"type":"STRING","name":"about"}, {"type":"TIMESTAMP","name":"registered"}, {"type":"FLOAT","name":"latitude"}, {"type":"FLOAT","name":"longitude"} ] -
Click on Create table
-
Go to Dataflow > Jobs > Create Job from Template
-
Run the Job.
-
Go to Dataproc > Clusters > Create Cluster
-
Select the Created Cluster > Go to VM Instances > SSH into cluster
-
Run the following command:
hdfs dfs -cp gs://cloud-training/gsp323/data.txt /data.txt
-
Exit the SSH
-
Submit Job > Configure as given:
-
Click on SUBMIT
-
Go to Dataprep > Accept the terms > Login with the same account
-
Import Data > Select GCS > Edit > Enter the path as this:
gs://cloud-training/gsp323/runs.csv
> Import and Wrangle -
Modify the table as specified in the lab instructions.
PART 1
Use the following commands:
gcloud iam service-accounts create my-natlang-sa \
--display-name "my natural language service account"
gcloud iam service-accounts keys create ~/key.json \
--iam-account my-natlang-sa@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com
export GOOGLE_APPLICATION_CREDENTIALS="/home/$USER/key.json"
gcloud auth activate-service-account my-natlang-sa@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com --key-file=$GOOGLE_APPLICATION_CREDENTIALS
gcloud ml language analyze-entities --content="Old Norse texts portray Odin as one-eyed and long-bearded, frequently wielding a spear named Gungnir and wearing a cloak and a broad hat." > result.json
gcloud auth login
(Copy the token from the link provided)
gsutil cp result.json gs://YOUR_PROJECT-marking/task4-cnl.result
PART 2
-
Create an API Key by going to IAM > Credentials, and export it as
API_KEY
variable in the Cloud Shell. -
Create the following JSON file:
nano request.json
{
"config": {
"encoding":"FLAC",
"languageCode": "en-US"
},
"audio": {
"uri":"gs://cloud-training/gsp323/task4.flac"
}
}
-
Run the following:
Replace
YOUR_PROJECT
with your GCP Project ID.
curl -s -X POST -H "Content-Type: application/json" --data-binary @request.json \
"https://speech.googleapis.com/v1/speech:recognize?key=${API_KEY}" > result.json
gsutil cp result.json gs://YOUR_PROJECT-marking/task4-gcs.result
PART 3
- Run the following:
gcloud iam service-accounts create quickstart
gcloud iam service-accounts keys create key.json --iam-account quickstart@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com
gcloud auth activate-service-account --key-file key.json
export ACCESS_TOKEN=$(gcloud auth print-access-token)
- Modify the previous JSON file:
nano request.json
{
"inputUri":"gs://spls/gsp154/video/chicago.mp4",
"features": [
"TEXT_DETECTION"
]
}
- Run the following:
Replace
YOUR_PROJECT
with your GCP Project ID.
curl -s -H 'Content-Type: application/json' \
-H "Authorization: Bearer $ACCESS_TOKEN" \
'https://videointelligence.googleapis.com/v1/videos:annotate' \
-d @request.json
curl -s -H 'Content-Type: application/json' -H "Authorization: Bearer $ACCESS_TOKEN" 'https://videointelligence.googleapis.com/v1/operations/OPERATION_FROM_PREVIOUS_REQUEST' > result1.json
gsutil cp result1.json gs://YOUR_PROJECT-marking/task4-gvi.result