Skip to content

Latest commit

 

History

History
179 lines (110 loc) · 4.34 KB

Prepare Data for ML APIs on Google Cloud: Challenge lab.md

File metadata and controls

179 lines (110 loc) · 4.34 KB
If you find my repository helpful, please star⭐ it 🌟.

Prepare Data for ML APIs on Google Cloud: Challenge Lab

Task 1: Run a simple Dataflow job

  • Navigation menu > Storage > Browser

  • Create a Storage Bucket > Enter name as your GCP Project ID > Leave others to default > Create

  • Go to BigQuery > Select project ID > Create Dataset > Enter the name as lab and click on Create

  • Run the following from the Cloud Shell:

gsutil cp gs://cloud-training/gsp323/lab.csv .

cat lab.csv

gsutil cp gs://cloud-training/gsp323/lab.schema .

cat lab.schema
  • Now, create a table inside the lab dataset and configure it as follows: [ {"type":"STRING","name":"guid"}, {"type":"BOOLEAN","name":"isActive"}, {"type":"STRING","name":"firstname"}, {"type":"STRING","name":"surname"}, {"type":"STRING","name":"company"}, {"type":"STRING","name":"email"}, {"type":"STRING","name":"phone"}, {"type":"STRING","name":"address"}, {"type":"STRING","name":"about"}, {"type":"TIMESTAMP","name":"registered"}, {"type":"FLOAT","name":"latitude"}, {"type":"FLOAT","name":"longitude"} ]

  • Click on Create table

  • Go to Dataflow > Jobs > Create Job from Template

  • Run the Job.

Task 2: Run a simple Dataproc job

  • Go to Dataproc > Clusters > Create Cluster

  • Select the Created Cluster > Go to VM Instances > SSH into cluster

  • Run the following command:

hdfs dfs -cp gs://cloud-training/gsp323/data.txt /data.txt
  • Exit the SSH

  • Submit Job > Configure as given:

  • Click on SUBMIT

Task 3: Run a simple Dataprep job

  • Go to Dataprep > Accept the terms > Login with the same account

  • Import Data > Select GCS > Edit > Enter the path as this: gs://cloud-training/gsp323/runs.csv > Import and Wrangle

  • Modify the table as specified in the lab instructions.

Task 4: AI

PART 1

Use the following commands:

gcloud iam service-accounts create my-natlang-sa \
  --display-name "my natural language service account"

gcloud iam service-accounts keys create ~/key.json \
  --iam-account my-natlang-sa@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com

export GOOGLE_APPLICATION_CREDENTIALS="/home/$USER/key.json"

gcloud auth activate-service-account my-natlang-sa@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com --key-file=$GOOGLE_APPLICATION_CREDENTIALS

gcloud ml language analyze-entities --content="Old Norse texts portray Odin as one-eyed and long-bearded, frequently wielding a spear named Gungnir and wearing a cloak and a broad hat." > result.json

gcloud auth login 
(Copy the token from the link provided)

gsutil cp result.json gs://YOUR_PROJECT-marking/task4-cnl.result

PART 2

  • Create an API Key by going to IAM > Credentials, and export it as API_KEY variable in the Cloud Shell.

  • Create the following JSON file:

nano request.json

{
  "config": {
      "encoding":"FLAC",
      "languageCode": "en-US"
  },
  "audio": {
      "uri":"gs://cloud-training/gsp323/task4.flac"
  }
}
  • Run the following:

    Replace YOUR_PROJECT with your GCP Project ID.

curl -s -X POST -H "Content-Type: application/json" --data-binary @request.json \
"https://speech.googleapis.com/v1/speech:recognize?key=${API_KEY}" > result.json

gsutil cp result.json gs://YOUR_PROJECT-marking/task4-gcs.result

PART 3

  • Run the following:
gcloud iam service-accounts create quickstart

gcloud iam service-accounts keys create key.json --iam-account quickstart@${GOOGLE_CLOUD_PROJECT}.iam.gserviceaccount.com

gcloud auth activate-service-account --key-file key.json

export ACCESS_TOKEN=$(gcloud auth print-access-token)
  • Modify the previous JSON file:
nano request.json

{
   "inputUri":"gs://spls/gsp154/video/chicago.mp4",
   "features": [
       "TEXT_DETECTION"
   ]
}
  • Run the following:

Replace YOUR_PROJECT with your GCP Project ID.

curl -s -H 'Content-Type: application/json' \
    -H "Authorization: Bearer $ACCESS_TOKEN" \
    'https://videointelligence.googleapis.com/v1/videos:annotate' \
    -d @request.json



curl -s -H 'Content-Type: application/json' -H "Authorization: Bearer $ACCESS_TOKEN" 'https://videointelligence.googleapis.com/v1/operations/OPERATION_FROM_PREVIOUS_REQUEST' > result1.json


gsutil cp result1.json gs://YOUR_PROJECT-marking/task4-gvi.result