-
Notifications
You must be signed in to change notification settings - Fork 6
/
inference_debug.py
136 lines (116 loc) · 5.38 KB
/
inference_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import warnings
import torch
import tqdm
from torch.utils.data import DataLoader
from src.data.collators import DataCollatorWithPaddingAndCuda
import hydra.utils as hu
import hydra
from hydra.core.hydra_config import HydraConfig
import numpy as np
import json
import os
from src.utils.cache_util import BufferedJsonWriter, BufferedJsonReader
from accelerate import Accelerator, DistributedType
import transformers
from src.utils import eval_datasets
import re
from omegaconf import OmegaConf
import glob
# from src.dataset_readers.tasks import Task
# from src.dataset_readers.few_shot_dsr.FewShotDatasetReader import
def remove_double_space(string):
return re.sub("[ ]{2,}", " ", string)
def renorm(text):
text = text.split("\n")[0]
text = re.sub("[\d]+\#\) ", ";", text)
return text
class Inferencer:
def __init__(self, cfg, accelerator) -> None:
self.dataset_reader = hu.instantiate(cfg.dataset_reader)
self.dataset_reader.shard(accelerator)
# print(len(self.dataset_reader.task.prompts))
self.dataset_reader.tokenizer.pad_token_id = [self.dataset_reader.tokenizer.eos_token_id]
self.dataset_reader.tokenizer.padding_side = "left"
self.accelerator = accelerator
# co = DataCollatorWithPaddingAndCuda(tokenizer=self.dataset_reader.tokenizer,device = 0 if self.accelerator.device is None else None)
co = DataCollatorWithPaddingAndCuda(tokenizer=self.dataset_reader.tokenizer, device=accelerator.device)
self.dataloader = DataLoader(self.dataset_reader, batch_size=cfg.batch_size, collate_fn=co)
# import pdb
# pdb.set_trace()
self.model = hu.instantiate(cfg.model)
self.model = self.model.to(self.accelerator.device)
self.model = self.model.eval().half()
# self.model, self.dataloader = self.accelerator.prepare(
# self.model, self.dataloader
# )
if hasattr(self.model, "module"):
self.model = self.model.module
self.output_file = cfg.output_file
self.cfg = cfg
self.max_length = cfg.max_length
self.data_list=[]
def forward(self):
if self.accelerator.is_main_process:
dataloader = tqdm.tqdm(self.dataloader)
else:
dataloader = self.dataloader
with BufferedJsonWriter(f"{self.output_file}tmp_{self.accelerator.device}.bin") as buffer:
for i, entry in enumerate(dataloader):
if "stop" in self.cfg and self.cfg.stop and i == 3:
break
metadata = entry.pop("metadata")
self.data_list += entry.max_prompts.tolist()
# print(entry.max_prompts)
# if entry.max_prompts.item() == 0:
# continue
# with torch.no_grad():
# # entry.input_ids = entry.input_ids.half()
# # entry.attention_mask = entry.attention_mask.half()
# res = self.model.generate(input_ids=entry.input_ids,
# attention_mask=entry.attention_mask,
# eos_token_id=self.dataset_reader.tokenizer.encode("\n")[0],
# pad_token_id=self.dataset_reader.tokenizer.pad_token_id,
# max_length=self.max_length,
# do_sample=False)
# # inp_length_list = entry.attention_mask.sum(-1).squeeze().tolist()
# a = int(entry.attention_mask.shape[1])
# for mdata, res_el in zip(metadata, res.tolist()):
# mdata['generated'] = self.dataset_reader.tokenizer.decode(res_el[a:])
# buffer.write(mdata)
with open("/remote-home/klv/exps/rtv_icl/v4/exps/bm25_kp20k_es_1020_1/data/max_prompts.txt", "w") as f:
f.write(str(self.data_list))
def write_predictions(self):
data = []
for path in glob.glob(f"{self.output_file}tmp_*.bin"):
with BufferedJsonReader(path) as f:
data.extend(f.read())
for path in glob.glob(f"{self.output_file}tmp_*.bin"):
os.remove(path)
# TODO
# zipped_data = [[entry['question'],renorm(entry['generated']).split("\n")[0],entry['decomposition']] for entry in data]
# question,pred,gold = list(zip(*zipped_data))
# acc_results = eval_many(question,pred,gold)
# for entry,acc_res in zip(data,acc_results):
# entry['correct'] =
with open(self.output_file, "w") as f:
json.dump(data, f)
# 移到 tmp_test.py 里评测
# data = eval_datasets.app[eval_datasets.get_dataset(self.output_file)](self.output_file)
# with open(self.output_file,"w") as f:
# json.dump(data,f)
return data
@hydra.main(config_path="configs", config_name="inference")
def main(cfg):
print(cfg)
with open("cfg_inference.json", "w") as f:
json.dump(OmegaConf.to_object(cfg), f)
accelerator = Accelerator()
inferencer = Inferencer(cfg, accelerator)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
inferencer.forward()
# accelerator.wait_for_everyone()
# if accelerator.is_main_process:
# inferencer.write_predictions()
if __name__ == "__main__":
main()