forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bestTimeToBuyAndSellStock.III.cpp
59 lines (51 loc) · 2.04 KB
/
bestTimeToBuyAndSellStock.III.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// Source : https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
// Author : Hao Chen
// Date : 2014-08-22
/**********************************************************************************
*
* Say you have an array for which the ith element is the price of a given stock on day i.
*
* Design an algorithm to find the maximum profit. You may complete at most two transactions.
*
* Note:
* You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
*
**********************************************************************************/
class Solution {
public:
// Dynamic Programming
//
// Considering prices[n], and we have a position "i", we could have
// 1) the maxProfit1 for prices[0..i]
// 2) the maxProfit2 for proices[i..n]
//
// So,
// for 1) we can go through the prices[n] forwardly.
// forward[i] = max( forward[i-1], price[i] - lowestPrice[0..i] )
// for 2) we can go through the prices[n] backwoardly.
// backward[i] = max( backward[i+1], highestPrice[i..n] - price[i])
//
int maxProfit(vector<int> &prices) {
if (prices.size()<=1) return 0;
int n = prices.size();
vector<int> forward(n);
forward[0] = 0;
int lowestBuyInPrice = prices[0];
for(int i=1; i<n; i++){
forward[i] = max(forward[i-1], prices[i] - lowestBuyInPrice);
lowestBuyInPrice = min(lowestBuyInPrice, prices[i]);
}
vector<int> backward(n);
backward[n-1] = 0;
int highestSellOutPrice = prices[n-1];
for(int i=n-2; i>=0; i--){
backward[i] = max(backward[i+1], highestSellOutPrice - prices[i]);
highestSellOutPrice = max(highestSellOutPrice, prices[i]);
}
int max_profit = 0;
for(int i=0; i<n; i++){
max_profit = max(max_profit, forward[i]+backward[i]);
}
return max_profit;
}
};