-
Notifications
You must be signed in to change notification settings - Fork 1
/
argparse_utils.py
158 lines (136 loc) · 6.17 KB
/
argparse_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from log_utils import logger_print
from log_utils import pretty
# from pydantic import BaseModel
import argparse
from typing import TypeVar, Generic, Callable, Any
# from beartype import beartype
from error_utils import ErrorManager
import subprocess
pydantic_type_to_pytype = {
"integer": int,
"number": float,
"string": str,
"boolean": bool,
# fallback type: string
}
prop_translation_as_is = ["default"]
prop_translation_table = {
"enum": "choices",
"title": "help",
**{e: e for e in prop_translation_as_is},
}
T = TypeVar("T")
import typing
# @beartype
# class ExternalFunctionManager:
class ArgumentTransformer(Generic[T]):
def __init__(self, dataModel: T):
self.dataModel = dataModel
self.description = dataModel.__doc__
self.annotations = getattr(
typing, "get_type_hints", lambda m: m.__annotations__
)(self.dataModel)
self.schema = self.dataModel.schema()
self.properties = self.schema["properties"]
self.fields = self.properties.keys()
self.cli_arguments = {}
self.required = self.schema.get("required", [])
with ErrorManager(
default_error=f"error on processing schema:\n{pretty(self.schema)}\ndataModel: {repr(self.dataModel)}"
) as ex:
for field, prop in self.properties.items():
help_info = []
field_lower = field.lower()
args = {"required": field in self.required}
pydantic_type = prop.pop("type", "unknown")
pytype = pydantic_type_to_pytype.get(pydantic_type, None)
annotated_type = self.annotations.get(field)
# annotated_type = self.dataModel.__annotations__.get(field) # .__name__?
# BUG: type: None
if annotated_type is None:
logger_print(
f"Possible malformed annotation in field '{field}' of dataclass '{self.dataModel.__name__}'",
f"Schema: {self.schema}",
)
help_info.append(
f"[{'type'.center(7,' ')}]\t{repr(annotated_type)}"
# f"[type]\t{getattr(annotated_type, '__name__', repr(annotated_type))}"
)
for prop_name, prop_value in prop.items():
if prop_name == "default":
help_info.append(f"[{'default'.center(7,' ')}]\t{prop_value}")
translated_prop_name = prop_translation_table.get(prop_name, None)
if translated_prop_name:
args[translated_prop_name] = prop_value
else:
msg = f"property key '{prop_name}' of field '{field}' does not have translation. skipping..."
logger_print(msg)
# ex.append(msg)
if pytype is not None:
args["type"] = pytype
else:
msg = f"pydantic type '{pydantic_type}' does not have corresponding python type. falling back to str"
logger_print(msg)
# ex.append(msg)
args["type"] = str
if field_lower in self.cli_arguments.keys():
ex.append(
f"Field '{field}' is possibly duplicated in the sense of lower case '{field_lower}' within existing fields"
)
continue
# if len(help_info) > 0:
# help_info += [""]
# ref: https://www.knowledge-repo.com/post/python/adding_newlines_to_argparse_help_text_in_python.kp
args["help"] = "\n".join([*help_info, f'{args.get("help","")}\n'])
# args["help"] = '\n'.join([f'({", ".join(help_info)})',f'{args.get("help","")}'])
self.cli_arguments[field_lower] = args
# breakpoint()
def parse(self):
argparser = argparse.ArgumentParser(description=self.description)
argparser.formatter_class = argparse.RawTextHelpFormatter
for argName, cli_arg in self.cli_arguments.items():
argparser.add_argument(f"--{argName}", **cli_arg)
arguments = argparser.parse_args()
arguments_serialized = {}
for field in self.fields:
arguments_serialized[field] = getattr(arguments, field.lower())
param = self.dataModel(**arguments_serialized)
return param
class ExternalFunctionManager(ArgumentTransformer[T]):
def __init__(self, dataModel: T, cmd: str):
super().__init__(dataModel)
self.cmd = cmd.strip()
def answer(self, func: Callable[[T], Any]):
def decorated_func():
param = self.parse()
return func(param)
return decorated_func
def call(self, func: Callable[[T], Any]):
def decorated_func(param: T):
assert isinstance(
param, self.dataModel
), f"Invalid parameter: {param}\nShould be of type {self.dataModel}"
arguments = []
for argName, argVal in param.dict().items():
argNameLower = argName.lower()
pytype = self.cli_arguments[argName]["type"]
argVal = pytype(argVal)
if not isinstance(argVal, str):
argVal = str(argVal)
arguments.extend([f"--{argNameLower}", argVal])
proc_cmd = self.cmd.split() + arguments
logger_print("calling:", proc_cmd, " ".join(proc_cmd))
proc = subprocess.run(
proc_cmd, shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE
)
logger_print("process output:", proc.stdout.decode())
logger_print("process stderr:", proc.stderr.decode())
if proc.returncode != 0:
logger_print("invalid process return code:", proc.returncode)
return func(param)
return decorated_func
# from shared_datamodels import ConflictRefinerParams
# conflictRefinerManager = ExternalFunctionManager(
# dataModel=ConflictRefinerParams,
# cmd="conda run -n docplex --live-stream --no-capture-output python conflict_utils.py",
# )