forked from norvig/pytudes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSET.py
134 lines (113 loc) · 4.25 KB
/
SET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import random
import collections
import itertools
"""
Game of Set (Peter Norvig 2010-2015)
How often do sets appear when we deal an array of cards?
How often in the course of playing out the game?
Here are the data types we will use:
card: A string, such as '3R=0', meaning "three red striped ovals".
deck: A list of cards, initially of length 81.
layout: A list of cards, initially of length 12.
set: A tuple of 3 cards.
Tallies: A dict: {12: {True: 33, False: 1}}} means a layout of size 12
tallied 33 sets and 1 non-set.
"""
#### Cards, dealing cards, and defining the notion of sets.
CARDS = [number + color + shade + symbol
for number in '123'
for color in 'RGP'
for shade in '@O='
for symbol in '0SD']
def deal(n, deck):
"Deal n cards from the deck."
return [deck.pop() for _ in range(n)]
def is_set(cards):
"Are these 3 cards a set? No if any feature has 2 values."
for f in range(4):
values = {card[f] for card in cards}
if len(values) == 2:
return False
return True
def find_set(layout):
"Return a set found from this layout, if there is one."
for cards in itertools.combinations(layout, 3):
if is_set(cards):
return cards
return ()
#### Tallying set:no-set ratio
def Tallies():
"A data structure to keep track, for each size, the number of sets and no-sets."
return collections.defaultdict(lambda: {True: 0, False: 0})
def tally(tallies, layout):
"Record that a set was found or not found in a layout of given size; return the set."
s = find_set(layout)
tallies[len(layout)][bool(s)] += 1
return s
#### Three experiments
def tally_initial_layout(N, sizes=(12, 15)):
"Record tallies for N initial deals."
tallies = Tallies()
deck = list(CARDS)
for deal in range(N):
random.shuffle(deck)
for size in sizes:
tally(tallies, deck[:size])
return tallies
def tally_initial_layout_no_prior_sets(N, sizes=(12, 15)):
"""Simulate N initial deals for each size, keeping tallies for Sets and NoSets,
but only when there was no set with 3 fewer cards."""
tallies = Tallies()
deck = list(CARDS)
for deal in range(N):
random.shuffle(deck)
for size in sizes:
if not find_set(deck[:size-3]):
tally(tallies, deck[:size])
return tallies
def tally_game_play(N):
"Record tallies for the play of N complete games."
tallies = Tallies()
for game in range(N):
deck = list(CARDS)
random.shuffle(deck)
layout = deal(12, deck)
while deck:
s = tally(tallies, layout)
# Pick up the cards in the set, if any
for card in s: layout.remove(card)
# Deal new cards
if len(layout) < 12 or not s:
layout += deal(3, deck)
return tallies
def experiments(N):
show({12: [1, 33], 15: [1, 2500]},
'the instruction booklet')
show(tally_initial_layout(N),
'initial layout')
show(tally_game_play(N // 25),
'game play')
show(tally_initial_layout_no_prior_sets(N),
'initial layout, but no sets before dealing last 3 cards')
def show(tallies, label):
"Print out the counts."
print()
print('Size | Sets | NoSets | Set:NoSet ratio for', label)
print('-----+--------+--------+----------------')
for size in sorted(tallies):
y, n = tallies[size][True], tallies[size][False]
ratio = ('inft' if n==0 else int(round(float(y)/n)))
print('{:4d} |{:7,d} |{:7,d} | {:4}:1'
.format(size, y, n, ratio))
def test():
assert len(CARDS) == 81 == len(set(CARDS))
assert is_set(('3R=O', '2R=S', '1R=D'))
assert not is_set(('3R=0', '2R=S', '1R@D'))
assert find_set(['1PO0', '2G=D', '3R=0', '2R=S', '1R=D']) == ('3R=0', '2R=S', '1R=D')
assert not find_set(['1PO0', '2G=D', '3R=0', '2R=S', '1R@D'])
photo = '2P=0 3P=D 2R=0 3GO0 2POD 3R@D 2RO0 2ROS 1P@S 2P@0 3ROS 2GOD 2P@D 1GOD 3GOS'.split()
assert not find_set(photo)
assert set(itertools.combinations([1, 2, 3, 4], 3)) == {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}
print('All tests pass.')
test()
experiments(100000)