-
Notifications
You must be signed in to change notification settings - Fork 3
/
OpenAI_GPT_WUI.py
402 lines (335 loc) · 22.1 KB
/
OpenAI_GPT_WUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import openai
from openai import OpenAI
import streamlit as st
import extra_streamlit_components as stx
from streamlit_extras.stoggle import stoggle
from PIL import Image
import base64
import io
import math
import json
import copy
import os.path
import tempfile
import common_functions as cf
import common_functions_WUI as cfw
import OpenAI_GPT as OAI_GPT
##########
class OAI_GPT_WUI:
def __init__(self, oai_gpt: OAI_GPT, enable_vision: bool = True, prompt_presets_dir: str = None, prompt_presets_file: str = None) -> None:
self.last_gpt_query = "last_gpt_query"
self.oai_gpt = oai_gpt
self.save_location = oai_gpt.get_save_location()
self.models = oai_gpt.get_models()
self.model_help = oai_gpt.get_model_help()
self.models_status = oai_gpt.get_models_status()
self.model_capability = oai_gpt.get_model_capability()
self.gpt_roles = oai_gpt.get_gpt_roles()
self.gpt_roles_help = oai_gpt.get_gpt_roles_help()
self.gpt_presets = oai_gpt.get_gpt_presets()
self.gpt_presets_help = oai_gpt.get_gpt_presets_help()
self.per_model_help = oai_gpt.get_per_model_help()
self.enable_vision = enable_vision
self.prompt_presets_dir = prompt_presets_dir
self.prompt_presets = {}
self.prompt_presets_file = prompt_presets_file
self.prompt_presets_settings = {}
err = self.load_prompt_presets()
if cf.isNotBlank(err):
st.error(err)
cf.error_exit(err)
def resize_rectangle(self, original_width, original_height, max_width, max_height):
aspect_ratio = original_width / original_height
max_area = max_width * max_height
original_area = original_width * original_height
# Calculate scaling factor for proportional fit
scale_factor = math.sqrt(max_area / original_area)
# Scale the dimensions
new_width = original_width * scale_factor
new_height = original_height * scale_factor
# Check if resizing would make the rectangle larger
if new_width >= original_width or new_height >= original_height:
return original_width, original_height
# Adjust if necessary to fit within max dimensions
if new_width > max_width:
new_width = max_width
new_height = new_width / aspect_ratio
if new_height > max_height:
new_height = max_height
new_width = new_height * aspect_ratio
return new_width, new_height
def img_resize_core(self, im, max_x, max_y):
new_x, new_y = self.resize_rectangle(im.size[0], im.size[1], max_x, max_y)
return int(new_x), int(new_y)
def img_resize(self, tfilen, details_selection):
with Image.open(tfilen) as im:
new_x, new_y = im_x, im_y = im.size[0], im.size[1]
if details_selection == "low":
new_x, new_y = self.img_resize_core(im, 512, 512)
else:
new_x, new_y = self.img_resize_core(im, 2048, 2048)
if new_x == im_x and new_y == im_y:
return new_x, new_y
im = im.resize((new_x, new_y))
im.save(tfilen, format="png")
return new_x, new_y
def file_uploader(self, details_selection):
# File uploader: [OpenAI supports] PNG (.png), JPEG (.jpeg and .jpg), WEBP (.webp), and non-animated GIF (.gif).
uploaded_file = st.file_uploader("Upload a PNG/JPEG/WebP image (automatic resize to a value closer to the selected \"details\" selected, see its \"?\")", type=['png','jpg','jpeg','webp'])
if uploaded_file is not None:
placeholder = st.empty()
tfile = tempfile.NamedTemporaryFile(delete=False)
tfilen = str(tfile.name)
with open(tfilen, "wb") as outfile:
outfile.write(uploaded_file.getvalue())
# confirm it is a valid PNG, JPEG, WEBP image
im_fmt = None
im_det = None
im_area = None
try:
with Image.open(tfilen) as im:
im_fmt = im.format
im_det = f"{im.size[0]}x{im.size[1]}"
except OSError:
pass
if im_fmt == "PNG" or im_fmt == "JPEG" or im_fmt == "WEBP":
im_x, im_y = self.img_resize(tfilen, details_selection)
tk_cst = (170 * im_x * im_y) // (512*512) + 85
tk_cst = 1105 if tk_cst > 1105 else tk_cst # following the details of "Calculating costs"
n_img_det = f"{im_x}x{im_y}"
res_txt = f"resized to: {n_img_det} " if n_img_det != im_det else ""
tkn_txt = f"(est. token cost -- \"high\": {tk_cst} | \"low\": 85)"
placeholder.info(f"Uploaded image: {im_fmt} orig size: {im_det} {res_txt} {tkn_txt}")
return tfilen
else:
placeholder.error(f"Uploaded image ({im_fmt}) is not a valid/supported PNG, JPEG, or WEBP image")
return None
return None
#####
def load_prompt_presets(self):
if self.prompt_presets_dir is None:
return ""
prompt_presets = {}
for file in os.listdir(self.prompt_presets_dir):
if file.endswith(".json"):
err = cf.check_file_r(os.path.join(self.prompt_presets_dir, file))
if cf.isNotBlank(err):
return err
with open(os.path.join(self.prompt_presets_dir, file), "r") as f:
prompt_presets[file.split(".json")[0]] = json.load(f)
self.prompt_presets = prompt_presets
if self.prompt_presets_file is not None:
err = cf.check_file_r(self.prompt_presets_file)
if cf.isNotBlank(err):
return err
with open(self.prompt_presets_file, "r") as f:
self.prompt_presets_settings = json.load(f)
if 'model' not in self.prompt_presets_settings:
return f"Could not find 'model' in {self.prompt_presets_file}"
model = self.prompt_presets_settings['model']
if model not in self.models:
return f"Could not find requested 'model' ({model}) in available models: {list(self.models.keys())} (from {self.prompt_presets_file})"
if 'tokens' not in self.prompt_presets_settings:
return f"Could not find 'tokens' in {self.prompt_presets_file}"
tmp = self.prompt_presets_settings['tokens']
if tmp is None:
return f"Invalid 'tokens' ({tmp}) in {self.prompt_presets_file}"
if tmp <= 0:
return f"Invalid 'tokens' ({tmp}) in {self.prompt_presets_file}"
if tmp > self.models[model]['max_token']:
return f"Requested 'tokens' ({tmp}) is greater than model's 'max_token' ({self.models[model]['max_token']}) in {self.prompt_presets_file}"
if 'temperature' not in self.prompt_presets_settings:
return f"Could not find 'temperature' in {self.prompt_presets_file}"
tmp = self.prompt_presets_settings['temperature']
if tmp is None:
return f"Invalid 'temperature' ({tmp}) in {self.prompt_presets_file}"
if tmp < 0:
return f"Invalid 'temperature' ({tmp}) in {self.prompt_presets_file}"
if tmp > 1:
return f"Invalid 'temperature' ({tmp}) in {self.prompt_presets_file}"
return ""
#####
def set_ui(self):
st.sidebar.empty()
vision_capable = False
vision_mode = False
disable_preset_prompts = False
clear_chat = False
prompt_preset = None
msg_extra = None
if 'gpt_last_prompt' in st.session_state:
if st.session_state['gpt_last_prompt'] != "":
disable_preset_prompts = True
with st.sidebar:
st.text("Check the various ? for help", help=f"[Run Details]\n\nRunID: {cfw.get_runid()}\n\nSave location: {self.save_location}\n\nUTC time: {cf.get_timeUTC()}\n")
if st.button("Clear Chat"):
clear_chat = True
st.session_state['gpt_last_prompt'] = ''
if self.last_gpt_query in st.session_state:
del st.session_state[self.last_gpt_query]
disable_preset_prompts = False
st.session_state['gpt_clear_chat'] = True
if 'gpt_msg_extra' in st.session_state:
del st.session_state['gpt_msg_extra'] # only a clear will allow us to set msg_extra again
# create a location placeholder for the prompt preset selector
st_preset_placeholder = st.empty()
if self.prompt_presets_settings == {}:
# Only available if not in "preset only" mode
model = st.selectbox("model", options=list(self.models.keys()), index=0, key="model", help=self.model_help)
if model in self.models_status:
st.info(f"{model}: {self.models_status[model]}")
if self.model_capability[model] == "vision":
vision_capable = True
m_token = self.models[model]['max_token']
# vision mode bypass
if self.enable_vision is False:
vision_mode = False
vision_capable = False
if vision_capable:
vision_mode = st.toggle(label="Vision", value=False, help="Enable the upload of an image. Vision's limitation and cost can be found at https://platform.openai.com/docs/guides/vision/limitations.\n\nDisables the role and presets selectors. Image(s) are resized when over the max of the \'details\' selected. Please be aware that each 512px x 512px title is expected to cost 170 tokens. Using this mode disables roles, presets and chat (the next prompt will not have knowledge of past thread of conversation)")
if vision_mode:
vision_details = st.selectbox("Vision Details", options=["auto", "low", "high"], index=0, key="vision_details", help="The model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.\n\n- low: the model will receive a low-res 512px x 512px version of the image, and represent the image with a budget of 85 tokens. This allows the API to return faster responses and consume fewer input tokens for use cases that do not require high detail.\n\n- high will first allows the model to first see the low res image (using 85 tokens) and then creates detailed crops using 170 tokens for each 512px x 512px tile.\n\n\n\nImage inputs are metered and charged in tokens, just as text inputs are. The token cost of a given image is determined by two factors: its size, and the detail option on each image_url block. All images with detail: low cost 85 tokens each. detail: high images are first scaled to fit within a 2048 x 2048 square, maintaining their aspect ratio. Then, they are scaled such that the shortest side of the image is 768px long. Finally, a count of how many 512px squares the image consists of is performed. Each of those squares costs 170 tokens. Another 85 tokens are always added to the final total. More details at https://platform.openai.com/docs/guides/vision/calculating-costs")
role = list(self.gpt_roles.keys())[0]
if vision_mode is False:
role = st.selectbox("Role", options=self.gpt_roles, index=0, key="input_role", help = "Role of the input text\n\n" + self.gpt_roles_help)
max_tokens = st.slider('max_tokens', 0, m_token, 1000, 100, "%i", "max_tokens", "The maximum number of tokens to generate in the completion. The token count of your prompt plus max_tokens cannot exceed the model\'s context length.")
temperature = st.slider('temperature', 0.0, 1.0, 0.5, 0.01, "%0.2f", "temperature", "The temperature of the model. Higher temperature results in more surprising text.")
if vision_mode is False:
presets = st.selectbox("GPT Task", options=list(self.gpt_presets.keys()), index=0, key="presets", help=self.gpt_presets_help)
else:
presets = list(self.gpt_presets.keys())[0]
else: # "preset only" mode
model = self.prompt_presets_settings['model']
max_tokens = self.prompt_presets_settings['tokens']
temperature = self.prompt_presets_settings['temperature']
presets = list(self.gpt_presets.keys())[0]
role = list(self.gpt_roles.keys())[0]
# use the location of the placeholder now that we have the vision settings
if self.prompt_presets_dir is not None:
prompt_preset = st_preset_placeholder.selectbox("Prompt preset", options=list(self.prompt_presets.keys()), index=None, key="prompt_preset", help="Load a prompt preset. Can only be used with new chats.", disabled=disable_preset_prompts)
if prompt_preset is not None:
if prompt_preset not in self.prompt_presets:
st_preset_placeholder.warning(f"Unkown {prompt_preset}")
else:
if 'messages' in self.prompt_presets[prompt_preset]:
if 'gpt_msg_extra' not in st.session_state:
msg_extra = self.prompt_presets[prompt_preset]["messages"]
st.session_state['gpt_msg_extra'] = msg_extra
# msg_extra is also set for vision mode but this check is only needed if not in vision mode to avoid passing the msg_extra each time
st.session_state['gpt_clear_chat'] = True
# clear the chat history in the GPT call as well
else:
if 'gpt_msg_extra' in st.session_state:
del st.session_state['gpt_msg_extra']
gpt_show_tooltip = st.toggle(label="Show Tips", value=False, help="Show some tips on how to use the tool", key="gpt_show_tooltip")
gpt_show_history = st.toggle(label='Show Prompt History', value=False, help="Show a list of prompts that you have used in the past (most recent first). Loading a selected prompt does not load the parameters used for the generation.", key="gpt_show_history")
if gpt_show_history:
gpt_allow_history_deletion = st.toggle('Allow Prompt History Deletion', value=False, help="This will allow you to delete a prompt from the history. This will delete the prompt and all its associated files. This cannot be undone.", key="gpt_allow_history_deletion")
# Main window
if gpt_show_tooltip:
stoggle('Tips', 'GPT provides a simple but powerful interface to any models. You input some text as a prompt, and the model will generate a text completion that attempts to match whatever context or pattern you gave it:<br>- The tool works on text to: answer questions, provide definitions, translate, summarize, and analyze sentiments.<br>- Keep your prompts clear and specific. The tool works best when it has a clear understanding of what you\'re asking it, so try to avoid vague or open-ended prompts.<br>- Use complete sentences and provide context or background information as needed.<br>- Some presets are available in the sidebar, check their details for more information.<br>A few example prompts (to use with "None" preset):<br>- Create a list of 8 questions for a data science interview<br>- Generate an outline for a blog post on MFT<br>- Translate "bonjour comment allez vous" in 1. English 2. German 3. Japanese<br>- write python code to display with an image selector from a local directory using OpenCV<br>- Write a creative ad and find a name for a container to run machine learning and computer vision algorithms by providing access to many common ML frameworks<br>- some models support "Chat" conversations. If you see the "Clear Chat" button, this will be one such model. They also support different max tokens, so adapt accordingly. The "Clear Chat" is here to allow you to start a new "Chat". Chat models can be given writing styles using the "system" "role"<br>More examples and hints can be found at https://platform.openai.com/examples')
if gpt_show_history:
err, hist = self.oai_gpt.get_history()
if cf.isNotBlank(err):
st.error(err)
cf.error_exit(err)
if len(hist) == 0:
st.warning("No prompt history found")
else:
cfw.show_history(hist, gpt_allow_history_deletion, 'gpt_last_prompt', self.last_gpt_query)
if 'gpt_last_prompt' not in st.session_state:
st.session_state['gpt_last_prompt'] = ''
prompt_value=f"GPT ({model}) Input (role: {role}) [max_tokens: {max_tokens} | temperature: {temperature}"
if vision_mode:
prompt_value += f" | vision details: {vision_details}"
prompt_value += f" | preset: {presets}"
if prompt_preset is not None:
prompt_value += f" | prompt preset: {prompt_preset}"
if 'gpt_clear_chat' in st.session_state or clear_chat is True:
prompt_value += " | Clear Chat"
prompt_value += f" ]"
help_text = self.per_model_help[model] if model in self.per_model_help else "No help available for this model"
prompt = st.empty().text_area(prompt_value, st.session_state['gpt_last_prompt'], placeholder="Enter your prompt", key="input", help=help_text)
st.session_state['gpt_last_prompt'] = prompt
img_file = None
if vision_mode:
img_file = self.file_uploader(vision_details)
img_type = "png" # convert everything to PNG for processing
if img_file is not None:
img_b64 = None
img_bytes = io.BytesIO()
with Image.open(img_file) as image:
image.save(img_bytes, format=img_type)
img_b64 = base64.b64encode(img_bytes.getvalue()).decode('utf-8')
if img_b64 is not None:
img_str = f"data:image/{img_type};base64,{img_b64}"
msg_extra = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": img_str,
"details": vision_details
}
}
],
"oaiwui_skip": True
}
]
if os.path.exists(img_file):
os.remove(img_file)
if st.button("Request Answer", key="request_answer"):
if cf.isBlank(prompt) or len(prompt) < 10:
st.error("Please provide a prompt of at least 10 characters before requesting an answer", icon="✋")
return ()
prompt = self.gpt_presets[presets]["pre"] + prompt + self.gpt_presets[presets]["post"]
prompt_token_count = self.oai_gpt.estimate_tokens(prompt)
requested_token_count = prompt_token_count + max_tokens
if requested_token_count > self.models[model]["context_token"]:
st.warning("You requested an estimated %i tokens, which might exceed the model's context window of %i tokens. We are still proceeding with the request, but an error return is possible." % (requested_token_count, self.models[model]["context_token"]))
if max_tokens > 0:
with st.spinner(f"Asking OpenAI ({model} for {max_tokens} tokens with temperature {temperature}. Prompt est. tokens : {prompt_token_count})"):
if 'gpt_clear_chat' in st.session_state:
clear_chat = True
del st.session_state['gpt_clear_chat']
if msg_extra is None:
if 'gpt_msg_extra' in st.session_state:
msg_extra = st.session_state['gpt_msg_extra']
else:
if 'gpt_msg_extra' in st.session_state:
tmp = msg_extra
msg_extra = copy.deepcopy(st.session_state['gpt_msg_extra'])
msg_extra.append(tmp[0])
err, run_file = self.oai_gpt.chatgpt_it(model, prompt, max_tokens, temperature, clear_chat, role, msg_extra, **self.gpt_presets[presets]["kwargs"])
if cf.isNotBlank(err):
st.error(err)
if cf.isNotBlank(run_file):
st.session_state[self.last_gpt_query] = run_file
st.toast("Done")
if self.last_gpt_query in st.session_state:
run_file = st.session_state[self.last_gpt_query]
run_json = cf.get_run_file(run_file)
prompt = run_json["prompt"]
response = run_json["response"]
chat_history = self.oai_gpt.get_chat_history(run_file)
if vision_mode is False:
stoggle('Original Prompt', prompt)
stoggle('Chat History', chat_history)
option_list = ('Text (no wordwrap)', 'Text (wordwrap, may cause some visual inconsistencies)',
'Code (automatic highlighting for supported languages)')
option = st.selectbox('Display mode:', option_list)
if option == option_list[0]:
st.text(response)
elif option == option_list[1]:
st.markdown(response)
elif option == option_list[2]:
st.code(response)
else:
st.error("Unknown display mode")
query_output = prompt + "\n\n--------------------------\n\n" + response
col1, col2, col3 = st.columns(3)
col1.download_button(label="Download Latest Result", data=response)
col2.download_button(label="Download Latest Query+Result", data=query_output)
col3.download_button(label="Download Chat Query+Result", data=chat_history)