-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerceptron_loss_function.cpp
106 lines (91 loc) · 2.64 KB
/
Perceptron_loss_function.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <bits/stdc++.h>
using namespace std;
vector<double> split_nums(string& line){
vector<double> vs;
string temp="";
for(int i=0;i<line.length();i++){
if(line[i]!=',')
temp.push_back(line[i]);
else{
vs.push_back(stod(temp));
temp="";
}
}
vs.push_back(stoi(temp)); // the last value
return vs;
}
void printCols(vector<vector<double>> inputs, vector<int> outputs){
int ind=0;
for(auto i: inputs){
for(auto j: i){
cout<<j<<',';
}
cout<<outputs[ind]<<'\n';
ind++;
}
}
void initializeRandomWeights(vector<double>& weights_and_bias) {
random_device rd;
mt19937 gen(rd());
uniform_real_distribution<double> dis(-1.0, 1.0); // Adjust the range based on your problem
for (double& weight : weights_and_bias) {
weight = dis(gen);
}
}
double sum(vector<double> v1, vector<double> v2){
v2.push_back(1); // bias term
double sum=0;
for(int i=0;i<v1.size();i++){
sum += v1[i]*v2[i];
}
return sum;
}
int classifier(vector<double> weights_and_bias, vector<double> input){
if(sum(weights_and_bias, input)>0)
return 1;
return 0;
}
int main(){
fstream fin, fout;
fin.open("train.csv", ios::in);
vector<vector<double>> inputs;
vector<int> outputs;
string temp;
fin>>temp; // eating up the first column(heading)
while(fin >> temp){
vector<double> splitted_nums = split_nums(temp);
inputs.push_back({});
for(int i=0;i<splitted_nums.size()-1;i++){
inputs.back().push_back(splitted_nums[i]);
}
outputs.push_back(splitted_nums.back());
}
// printCols(inputs, outputs);
vector<double> weights_and_bias(inputs.size()+1, 1);
initializeRandomWeights(weights_and_bias);
double learning_rate = 0.1;
int epochs = 1e3;
// training
while(epochs--){
// using loss function
for (int i = 0; i < inputs.size(); i++)
{
int predicted = classifier(weights_and_bias, inputs[i]);
if(predicted*outputs[i]<=0){
for(int j=0;j<inputs[i].size();j++){
weights_and_bias[j] += learning_rate*outputs[i]*inputs[i][j];
}
weights_and_bias.back() += learning_rate*outputs[i];
}
}
}
// testing
fin.close();
fin.open("test.csv", ios::in);
fin>>temp; // eating up the first column(heading)
while(fin >> temp){
vector<double> splitted_nums = split_nums(temp);
cout<<classifier(weights_and_bias, splitted_nums)<<'\n';
}
return 0;
}