-
Notifications
You must be signed in to change notification settings - Fork 22
/
test.py
189 lines (154 loc) · 4.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (C) QMoE.2023 Elias Frantar ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Test file for individual layer benchmarks and theoretical compression rates.
import argparse
import heapq
import numpy as np
import random
import time
import torch
import sub1_cuda
COUNT = 2 ** 16
ZEROS = .885
probs = [ZEROS] + [(1 - ZEROS) / 2] * 2
probs1 = []
def gen(prob, count):
if count == 0:
probs1.append(prob)
else:
for i in range(len(probs)):
gen(prob * probs[i], count - 1)
gen(1., 2)
probs = probs1
res = []
pq = [(-1., [])]
while len(res) < COUNT:
top = heapq.heappop(pq)
if top[0] != -1.:
res.append(top)
if len(top[1]) == 14:
continue
for i in range(len(probs)):
heapq.heappush(pq, (top[0] * probs[i], top[1] + [i]))
dec = np.zeros(2 * COUNT, dtype=np.uint32)
for i in range(COUNT):
for j, r in enumerate(res[i][1][:7]):
dec[2 * i + 0] |= (r % 3) << (4 * j + 0)
dec[2 * i + 0] |= (r // 3) << (4 * j + 2)
dec[2 * i + 0] <<= 4
dec[2 * i + 0] |= len(res[i][1])
for j, r in enumerate(res[i][1][7:]):
dec[2 * i + 1] |= (r % 3) << (4 * j + 0)
dec[2 * i + 1] |= (r // 3) << (4 * j + 2)
dec[2 * i + 1] <<= 4
dec[2 * i + 1] |= len(res[i][1])
def trie_add(trie, seq, idx, i=0):
if i == len(seq):
trie[-1] = idx
else:
trie[seq[i]] = trie_add(trie.get(seq[i], {}), seq, idx, i + 1)
return trie
trie = {}
for i, r in enumerate(res):
trie = trie_add(trie, r[1], i)
def genseq(count):
seq = random.choices(list(range(len(probs))), weights=probs, k=count // 2)
if count % 2 != 0:
seq.append(random.randint(0, 3 ** (count % 2) - 1))
return seq
def greedy(seq):
res = []
i = 0
curtrie = trie
while i < len(seq):
if seq[i] not in curtrie:
res.append(curtrie[-1])
curtrie = trie
curtrie = curtrie[seq[i]]
i += 1
if -1 in curtrie:
res.append(curtrie[-1])
return res
def decompress(seq, width):
dec = []
row = 0
for idx in seq:
for tern in res[idx][1]:
for _ in range(2):
w = (tern % 3)
dec.append([0, termin[row], termax[row]][w])
if len(dec) % D2 == 0:
row += 1
break
tern //= 3
return np.array(dec, dtype=np.float32)
def benchmark(f, warmup=100, iter=1000):
for _ in range(warmup):
f()
torch.cuda.synchronize()
tick = time.time()
for _ in range(iter):
f()
torch.cuda.synchronize()
return (time.time() - tick) / iter
parser = argparse.ArgumentParser()
parser.add_argument(
'--benchmark', action='store_true',
help='Whether to run benchmarking.'
)
args = parser.parse_args()
dec = torch.from_numpy(dec.astype(np.int32)).cuda()
for D1, D2 in [
(768, 3072), (3072, 768),
(1024, 4096), (4096, 1024),
(2080, 6144), (6144, 2080)
]:
print((D1, D2))
mat = []
row_off = [0]
for _ in range(D1):
row = greedy(genseq(D2))
mat.extend(row)
row_off.append(len(mat))
w_comp = np.array(mat, dtype=np.uint16)
row_off = np.array(row_off, dtype=np.int32)
termin = -np.random.uniform(size=D1).astype(np.float32)
termax = +np.random.uniform(size=D1).astype(np.float32)
terminmax = np.column_stack((termin, termax)).reshape(-1)
x = np.random.uniform(size=(D2, 1)).astype(np.float32)
y = np.zeros((D1, 1), dtype=np.float32)
w = decompress(w_comp, D2).reshape((D1, D2))
w_comp = torch.from_numpy(w_comp.astype(np.int16)).cuda()
row_off = torch.from_numpy(row_off).cuda()
ter_minmax = torch.from_numpy(terminmax).cuda()
ter_minmax = ter_minmax.bfloat16()
x = torch.from_numpy(x).cuda()
y = torch.from_numpy(y).cuda()
w = torch.from_numpy(w).cuda()
x = x.bfloat16()
y = y.bfloat16()
w = w.bfloat16()
if args.benchmark:
print(' Sub1:', benchmark(lambda: sub1_cuda.sub1matvec(dec, w_comp, row_off, ter_minmax, x, y)))
print('Dense:', benchmark(lambda: torch.matmul(w, x, out=y)))
else:
print((16 * D1 * D2) / (16 * row_off[-1] + 64 * len(row_off)))
print(torch.matmul(w, x))
sub1_cuda.sub1matvec(dec, w_comp, row_off, ter_minmax, x, y)
print(y)
import sub1
w = w.to(sub1.DEV)
x = x.to(sub1.DEV)
linear = sub1.Sub1Linear.make(w)
print(linear(x.reshape((1, -1))))