-
Notifications
You must be signed in to change notification settings - Fork 22
/
quant.py
76 lines (61 loc) · 2.16 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (C) QMoE.2023 Elias Frantar ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/IST-DASLab/gptq/blob/main/quant.py
import numpy as np
import torch
import torch.nn as nn
def quantize(x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def configure(
self, bits, sym=False
):
if bits == 1.5:
self.maxq = torch.tensor(-1) # use -1 to identify ternary
else:
self.maxq = torch.tensor(2 ** int(bits) - 1)
self.sym = sym
def find_params(self, x):
dev = x.device
self.maxq = self.maxq.to(dev)
tmp = torch.zeros(x.shape[:-1], device=dev)
xmin = torch.minimum(x.min(-1)[0], tmp)
xmax = torch.maximum(x.max(-1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
# For ternary, repurpose `scale` as max and `zero` as min to avoid interface changes
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
self.scale = self.scale.unsqueeze(-1)
self.zero = self.zero.unsqueeze(-1)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x