-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunetUpscale.py
123 lines (111 loc) · 5.04 KB
/
unetUpscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch.nn as nn
import torch.nn.functional as F
import os
import torch
class CnnBlock(nn.Module):
def __init__(self, in_channels, out_channels, skip_final_activation=False):
super().__init__()
self.skip_final_activation = skip_final_activation
self.activation = F.relu
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=1)
self.skip = nn.Conv2d(in_channels, out_channels, 1)
def forward(self, x):
input_x = x
x = self.activation(self.conv1(x))
x = self.conv2(x)
x = x + self.skip(input_x)
if not self.skip_final_activation:
x = self.activation(x)
return x
class StackedBlocks(nn.Module):
def __init__(self, in_channels, out_channels, n_blocks):
super().__init__()
self.n_blocks = n_blocks
if n_blocks == 0: # one Conv2d
self.blocks = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1), nn.ReLU())
elif n_blocks == 1: # two Conv2d with a skip connection
self.blocks = CnnBlock(in_channels, out_channels)
elif n_blocks > 1:
self.blocks = nn.Sequential(CnnBlock(in_channels, out_channels), *[CnnBlock(out_channels, out_channels) for i in range(n_blocks-1)])
self.skip = nn.Conv2d(in_channels, out_channels, 1)
else:
raise ValueError("n_blocks must be larger than 0, it was:", n_blocks)
def forward(self, x):
input_x = x
x = self.blocks(x)
return self.skip(input_x) + x if self.n_blocks > 1 else x
class Encoder(nn.Module):
def __init__(self, nchannels, n_blocks, scale_power):
super().__init__()
self.nchannels = nchannels
self.initScaler = nn.Upsample(scale_factor=2**scale_power, mode='bilinear', align_corners=True)
self.scale_power = scale_power
self.pool = nn.MaxPool2d(2)
self.cnn = nn.Conv2d(nchannels[scale_power], nchannels[scale_power]-3, 1) # remove 3 channels to make room for the original 3-channel RGB image
self.blocks = nn.ModuleList([StackedBlocks(nchannels[i], nchannels[i+1], n_blocks) for i in range(len(nchannels)-1)])
def forward(self, x):
input_x = x
features = []
x = self.initScaler(x)
for block in self.blocks[:self.scale_power]:
x = block(x)
features.append(x)
x = self.pool(x)
x = self.cnn(x)
x = torch.cat([input_x, x], dim=1)
for block in self.blocks[self.scale_power:]:
x = block(x)
features.append(x)
x = self.pool(x)
return features
class UpscaleBlock(nn.Module): # A*A*C -> 2A*2A*C/2
def __init__(self, in_channels, out_channels):
super().__init__()
#self.upscaleLayer = nn.PixelShuffle(2) # A*A*C -> 2A*2A*C/4
self.upscaleLayer = nn.Upsample(scale_factor=2, mode='nearest')
self.pad = nn.ReflectionPad2d(1)
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=0, stride=1)
self.activation = F.relu
def forward(self, x):
x = self.pad(self.upscaleLayer(x))
x = self.conv1(x)
# activation function here?
#x = self.activation(x)
return x
class Decoder(nn.Module):
def __init__(self, nchannels, n_blocks, scale_power):
super().__init__()
self.nchannels = nchannels
self.upconvs = nn.ModuleList([UpscaleBlock(nchannels[i], nchannels[i]//2) for i in range(len(nchannels)-1)])
self.blocks = nn.ModuleList([CnnBlock(nchannels[i], nchannels[i+1]) if n_blocks > 0 else nn.Conv2d(nchannels[i], nchannels[i+1], 3, stride=1, padding=1) for i in range(len(nchannels)-1)])
self.finalBlock = CnnBlock(nchannels[-1], 3, skip_final_activation=True) if n_blocks > 0 else nn.Conv2d(nchannels[-1], 3, 3, stride=1, padding=1)
#self.finalUpscale = UpscaleBlock(nchannels[-1], nchannels[-1])
#self.finalBlock = CnnBlock(nchannels[-1], 3, skip_final_activation=True)
def forward(self, x, encoder_features):
for i in range(len(self.nchannels)-1):
x = self.upconvs[i](x)
x = torch.cat([x, encoder_features[i]], dim=1)
temp = encoder_features[i]
del temp
encoder_features[i] = None # does this clear up things?
x = self.blocks[i](x)
#x = self.finalUpscale(x)
x = torch.sigmoid(self.finalBlock(x))
return x
class UNet(nn.Module):
# Important! The side lengths of the input image must be divisible depth times by 2. Add padding to nearest multiple when evaluating
# Safe size: current_size + current_size % 2**(len(nchannels)-1)
# Pad to safe size, then crop to correct upscaled size afterwards
def __init__(self, depth=5, init_channels=64, n_blocks=1, scale_power=1):
super().__init__()
#nchannels=[64,128,256,512]
self.nchannels = [init_channels * 2**i for i in range(depth)]
self.nchannels = [init_channels // 2**i for i in range(scale_power, 0, -1)] + self.nchannels
print("nchannels:", [3] + self.nchannels)
self.encoder = Encoder([3] + self.nchannels, n_blocks, scale_power)
self.decoder = Decoder(self.nchannels[::-1], n_blocks, scale_power) # reverse
def forward(self, x):
encoder_features = self.encoder(x)
out = self.decoder(encoder_features[::-1][0], encoder_features[::-1][1:])
return out