-
Notifications
You must be signed in to change notification settings - Fork 14
/
run_vicuna_evaluation.py
82 lines (71 loc) · 2.21 KB
/
run_vicuna_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import click
import torch
import argparse
import dataclasses
import transformers
from typing import Tuple
from peft import PeftModelForCausalLM
from transformers import PreTrainedTokenizerBase
from experiments.vicuna_utils import run_eval
from run_oasst1 import (
get_accelerate_model,
ModelArguments,
DataArguments,
TrainingArguments,
GenerationArguments,
CustomAdditionalArguments)
def setup() -> Tuple[PeftModelForCausalLM, PreTrainedTokenizerBase, argparse.Namespace]:
hfparser = transformers.HfArgumentParser(( # type: ignore
ModelArguments,
DataArguments,
TrainingArguments,
GenerationArguments,
CustomAdditionalArguments))
(model_args,
data_args,
training_args,
generation_args,
custom_args,
_) = hfparser.parse_args_into_dataclasses(
return_remaining_strings=True)
# training_args.generation_config = transformers.GenerationConfig(**vars(generation_args))
training_args = dataclasses.replace(
training_args,
generation_config=transformers.GenerationConfig(
**vars(generation_args)))
args = argparse.Namespace(
**vars(model_args),
**vars(data_args),
**vars(training_args),
**vars(custom_args))
print(args)
model, tokenizer = get_accelerate_model(args)
model.config.use_cache = False
return model, tokenizer, args
if __name__ == "__main__":
# Setting up the model, tokenizer
model, tokenizer, args = setup()
model.to(device="cuda")
# Load the model checkpoint
checkpoint_base_dir = os.getenv(
"CHECKPOINT_BASE_DIR",
default=None)
if checkpoint_base_dir is None:
raise ValueError
checkpoint_path = os.path.join(
checkpoint_base_dir,
args.output_dir,
"full_model.pth")
state_dict = torch.load(checkpoint_path)
model.load_state_dict(state_dict)
click.secho(f"Loaded model from {checkpoint_path}", fg="green")
# Run the evaluation
run_eval(
model=model,
tokenizer=tokenizer,
model_id="guanaco",
question_file="data/vicuna_question.jsonl",
answer_file=f"{args.output_dir}_answer.jsonl",
num_gpus=1,
)