-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathpreload_models.py
112 lines (87 loc) · 3.98 KB
/
preload_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import pathlib
from worker.utils.set_envs import get_models_to_load, set_worker_env_vars_from_config
set_worker_env_vars_from_config() # Get `cache_home` from `bridgeConfig.yaml` into the environment variable
import hordelib # noqa: E402
hordelib.initialise()
from hordelib.shared_model_manager import MODEL_CATEGORY_NAMES, SharedModelManager # noqa: E402
print("Model directory to use: ")
AIWORKER_CACHE_HOME = os.environ.get("AIWORKER_CACHE_HOME", None)
if AIWORKER_CACHE_HOME is None:
print("AIWORKER_CACHE_HOME is not set.")
print("Please set `cache_home` in your bridge data to the directory where you want to store models.")
print("Or, set AIWORKER_CACHE_HOME in your environment variables.")
exit(1)
cache_home_path = pathlib.Path(AIWORKER_CACHE_HOME).resolve()
SharedModelManager.load_model_managers(
[
MODEL_CATEGORY_NAMES.blip,
MODEL_CATEGORY_NAMES.clip,
MODEL_CATEGORY_NAMES.codeformer,
MODEL_CATEGORY_NAMES.compvis,
MODEL_CATEGORY_NAMES.controlnet,
MODEL_CATEGORY_NAMES.esrgan,
MODEL_CATEGORY_NAMES.gfpgan,
MODEL_CATEGORY_NAMES.safety_checker,
],
)
if SharedModelManager.manager.compvis is None:
print("CompVis model manager is not loaded.")
exit(1)
def preload_models():
if SharedModelManager.manager.compvis is None:
raise Exception("CompVis model manager is not loaded.")
all_model_names = SharedModelManager.manager.compvis.model_reference.keys()
all_downloaded_models = SharedModelManager.manager.compvis.available_models
all_models_not_downloaded = set(all_model_names) - set(all_downloaded_models)
all_models_not_downloaded = list(all_models_not_downloaded)
if len(all_models_not_downloaded) == 0:
print("All models are downloaded.")
return
models_to_load = get_models_to_load()
if not models_to_load:
print("No models to load.")
return
models_to_download = set(models_to_load) - set(all_downloaded_models)
if len(models_to_download) == 0:
print("All models to load are downloaded.")
return
print(
f"This is going to download {len(models_to_download)} models. They are at least 2gb each. Are you sure? (y/n)",
)
if input() != "y":
return
for model_name in models_to_download:
print(f"Downloading {model_name}...")
if not SharedModelManager.manager.compvis.download_model(model_name):
print(f"Failed to download {model_name}.")
continue
SharedModelManager.manager.compvis.load(model_name)
SharedModelManager.manager.compvis.move_to_disk_cache(model_name)
SharedModelManager.manager.compvis.unload_model(model_name)
print(f"Downloaded {model_name}.")
def build_cache(models):
if SharedModelManager.manager.compvis is None:
raise Exception("CompVis model manager is not loaded.")
print("Building cache for models...")
print("This is going to write at least 2.2 gb per model to your tmp_dir.")
tmp_dir = os.environ.get("AIWORKER_TEMP_DIR", "./tmp")
print(f"tmp_dir: {tmp_dir}")
models_num = len(SharedModelManager.manager.available_models)
print(f"Models to build cache for: {models_num}")
print("Are you sure? (y/n)")
if input() != "y":
return
for downloaded_model in models:
if SharedModelManager.manager.compvis.have_model_cache(downloaded_model):
continue
if not SharedModelManager.manager.compvis.load(downloaded_model): # noqa: SIM102
if not SharedModelManager.manager.download_model(downloaded_model):
print(f"Failed to download {downloaded_model}.")
continue
print(f"Building cache for {downloaded_model}...")
SharedModelManager.manager.compvis.move_to_disk_cache(downloaded_model)
SharedModelManager.manager.compvis.unload_model(downloaded_model)
if __name__ == "__main__":
preload_models()
build_cache(SharedModelManager.manager.compvis.available_models)