forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_eval.py
372 lines (328 loc) · 13 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train and Eval C-learning."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import time
from absl import app
from absl import flags
from absl import logging
import c_learning_agent
import c_learning_envs
import c_learning_utils
import gin
import numpy as np
from six.moves import range
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from tf_agents.agents.sac import tanh_normal_projection_network
from tf_agents.drivers import dynamic_step_driver
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import actor_distribution_network
from tf_agents.policies import greedy_policy
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.utils import common
flags.DEFINE_string('root_dir', os.getenv('TEST_UNDECLARED_OUTPUTS_DIR'),
'Root directory for writing logs/summaries/checkpoints.')
flags.DEFINE_multi_string('gin_file', None, 'Path to the trainer config files.')
flags.DEFINE_multi_string('gin_bindings', None, 'Gin binding to pass through.')
FLAGS = flags.FLAGS
@gin.configurable
def bce_loss(y_true, y_pred, label_smoothing=0):
loss_fn = tf.keras.losses.BinaryCrossentropy(
label_smoothing=label_smoothing, reduction=tf.keras.losses.Reduction.NONE)
return loss_fn(y_true[:, None], y_pred[:, None])
@gin.configurable
def train_eval(
root_dir,
env_name='sawyer_reach',
num_iterations=3000000,
actor_fc_layers=(256, 256),
critic_obs_fc_layers=None,
critic_action_fc_layers=None,
critic_joint_fc_layers=(256, 256),
# Params for collect
initial_collect_steps=10000,
collect_steps_per_iteration=1,
replay_buffer_capacity=1000000,
# Params for target update
target_update_tau=0.005,
target_update_period=1,
# Params for train
train_steps_per_iteration=1,
batch_size=256,
actor_learning_rate=3e-4,
critic_learning_rate=3e-4,
gamma=0.99,
gradient_clipping=None,
use_tf_functions=True,
# Params for eval
num_eval_episodes=30,
eval_interval=10000,
# Params for summaries and logging
train_checkpoint_interval=200000,
log_interval=1000,
summary_interval=1000,
summaries_flush_secs=10,
debug_summaries=False,
summarize_grads_and_vars=False,
random_seed=0,
max_future_steps=50,
actor_std=None,
log_subset=None,
):
"""A simple train and eval for SAC."""
np.random.seed(random_seed)
tf.random.set_seed(random_seed)
root_dir = os.path.expanduser(root_dir)
train_dir = os.path.join(root_dir, 'train')
eval_dir = os.path.join(root_dir, 'eval')
train_summary_writer = tf.compat.v2.summary.create_file_writer(
train_dir, flush_millis=summaries_flush_secs * 1000)
train_summary_writer.set_as_default()
global_step = tf.compat.v1.train.get_or_create_global_step()
with tf.compat.v2.summary.record_if(
lambda: tf.math.equal(global_step % summary_interval, 0)):
tf_env, eval_tf_env, obs_dim = c_learning_envs.load(env_name)
time_step_spec = tf_env.time_step_spec()
observation_spec = time_step_spec.observation
action_spec = tf_env.action_spec()
if actor_std is None:
proj_net = tanh_normal_projection_network.TanhNormalProjectionNetwork
else:
proj_net = functools.partial(
tanh_normal_projection_network.TanhNormalProjectionNetwork,
std_transform=lambda t: actor_std * tf.ones_like(t))
actor_net = actor_distribution_network.ActorDistributionNetwork(
observation_spec,
action_spec,
fc_layer_params=actor_fc_layers,
continuous_projection_net=proj_net)
critic_net = c_learning_utils.ClassifierCriticNetwork(
(observation_spec, action_spec),
observation_fc_layer_params=critic_obs_fc_layers,
action_fc_layer_params=critic_action_fc_layers,
joint_fc_layer_params=critic_joint_fc_layers,
kernel_initializer='glorot_uniform',
last_kernel_initializer='glorot_uniform')
tf_agent = c_learning_agent.CLearningAgent(
time_step_spec,
action_spec,
actor_network=actor_net,
critic_network=critic_net,
actor_optimizer=tf.compat.v1.train.AdamOptimizer(
learning_rate=actor_learning_rate),
critic_optimizer=tf.compat.v1.train.AdamOptimizer(
learning_rate=critic_learning_rate),
target_update_tau=target_update_tau,
target_update_period=target_update_period,
td_errors_loss_fn=bce_loss,
gamma=gamma,
gradient_clipping=gradient_clipping,
debug_summaries=debug_summaries,
summarize_grads_and_vars=summarize_grads_and_vars,
train_step_counter=global_step)
tf_agent.initialize()
eval_summary_writer = tf.compat.v2.summary.create_file_writer(
eval_dir, flush_millis=summaries_flush_secs * 1000)
eval_metrics = [
tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
c_learning_utils.FinalDistance(
buffer_size=num_eval_episodes, obs_dim=obs_dim),
c_learning_utils.MinimumDistance(
buffer_size=num_eval_episodes, obs_dim=obs_dim),
c_learning_utils.DeltaDistance(
buffer_size=num_eval_episodes, obs_dim=obs_dim),
]
train_metrics = [
tf_metrics.NumberOfEpisodes(),
tf_metrics.EnvironmentSteps(),
tf_metrics.AverageEpisodeLengthMetric(
buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
c_learning_utils.InitialDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size,
obs_dim=obs_dim),
c_learning_utils.FinalDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size,
obs_dim=obs_dim),
c_learning_utils.MinimumDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size,
obs_dim=obs_dim),
c_learning_utils.DeltaDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size,
obs_dim=obs_dim),
]
if log_subset is not None:
start_index, end_index = log_subset
for name, metrics in [('train', train_metrics), ('eval', eval_metrics)]:
metrics.extend([
c_learning_utils.InitialDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size if name == 'train' else 10,
obs_dim=obs_dim,
start_index=start_index,
end_index=end_index,
name='SubsetInitialDistance'),
c_learning_utils.FinalDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size if name == 'train' else 10,
obs_dim=obs_dim,
start_index=start_index,
end_index=end_index,
name='SubsetFinalDistance'),
c_learning_utils.MinimumDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size if name == 'train' else 10,
obs_dim=obs_dim,
start_index=start_index,
end_index=end_index,
name='SubsetMinimumDistance'),
c_learning_utils.DeltaDistance(
buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size if name == 'train' else 10,
obs_dim=obs_dim,
start_index=start_index,
end_index=end_index,
name='SubsetDeltaDistance'),
])
eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
initial_collect_policy = random_tf_policy.RandomTFPolicy(
tf_env.time_step_spec(), tf_env.action_spec())
collect_policy = tf_agent.collect_policy
train_checkpointer = common.Checkpointer(
ckpt_dir=train_dir,
agent=tf_agent,
global_step=global_step,
metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'),
max_to_keep=None)
train_checkpointer.initialize_or_restore()
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
data_spec=tf_agent.collect_data_spec,
batch_size=tf_env.batch_size,
max_length=replay_buffer_capacity)
replay_observer = [replay_buffer.add_batch]
initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
tf_env,
initial_collect_policy,
observers=replay_observer + train_metrics,
num_steps=initial_collect_steps)
collect_driver = dynamic_step_driver.DynamicStepDriver(
tf_env,
collect_policy,
observers=replay_observer + train_metrics,
num_steps=collect_steps_per_iteration)
if use_tf_functions:
initial_collect_driver.run = common.function(initial_collect_driver.run)
collect_driver.run = common.function(collect_driver.run)
tf_agent.train = common.function(tf_agent.train)
# Save the hyperparameters
operative_filename = os.path.join(root_dir, 'operative.gin')
with tf.compat.v1.gfile.Open(operative_filename, 'w') as f:
f.write(gin.operative_config_str())
logging.info(gin.operative_config_str())
if replay_buffer.num_frames() == 0:
# Collect initial replay data.
logging.info(
'Initializing replay buffer by collecting experience for %d steps '
'with a random policy.', initial_collect_steps)
initial_collect_driver.run()
metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
metric_utils.log_metrics(eval_metrics)
time_step = None
policy_state = collect_policy.get_initial_state(tf_env.batch_size)
timed_at_step = global_step.numpy()
time_acc = 0
def _filter_invalid_transition(trajectories, unused_arg1):
return ~trajectories.is_boundary()[0]
dataset = replay_buffer.as_dataset(
sample_batch_size=batch_size,
num_steps=max_future_steps)
dataset = dataset.unbatch().filter(_filter_invalid_transition)
dataset = dataset.batch(batch_size, drop_remainder=True)
goal_fn = functools.partial(
c_learning_utils.goal_fn,
batch_size=batch_size,
obs_dim=obs_dim,
gamma=gamma)
dataset = dataset.map(goal_fn)
dataset = dataset.prefetch(5)
iterator = iter(dataset)
def train_step():
experience, _ = next(iterator)
return tf_agent.train(experience)
if use_tf_functions:
train_step = common.function(train_step)
global_step_val = global_step.numpy()
while global_step_val < num_iterations:
start_time = time.time()
time_step, policy_state = collect_driver.run(
time_step=time_step,
policy_state=policy_state,
)
for _ in range(train_steps_per_iteration):
train_loss = train_step()
time_acc += time.time() - start_time
global_step_val = global_step.numpy()
if global_step_val % log_interval == 0:
logging.info('step = %d, loss = %f', global_step_val,
train_loss.loss)
steps_per_sec = (global_step_val - timed_at_step) / time_acc
logging.info('%.3f steps/sec', steps_per_sec)
tf.compat.v2.summary.scalar(
name='global_steps_per_sec', data=steps_per_sec, step=global_step)
timed_at_step = global_step_val
time_acc = 0
for train_metric in train_metrics:
train_metric.tf_summaries(
train_step=global_step, step_metrics=train_metrics[:2])
if global_step_val % eval_interval == 0:
metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
metric_utils.log_metrics(eval_metrics)
if global_step_val % train_checkpoint_interval == 0:
train_checkpointer.save(global_step=global_step_val)
return train_loss
def main(_):
tf.compat.v1.enable_v2_behavior()
logging.set_verbosity(logging.INFO)
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_bindings)
root_dir = FLAGS.root_dir
train_eval(root_dir)
if __name__ == '__main__':
flags.mark_flag_as_required('root_dir')
app.run(main)