We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
using Pkg; Pkg.activate(".") using FastAI, FastVision, Random, Images import CairoMakie; CairoMakie.activate!(type="png"); path = FastAI.load(datasets()["oxford-iiit-pet"]) im_path = joinpath(path, "images") files = loadfolderdata(im_path; filterfn=FastVision.isimagefile) function transform_image(image, sz=224) image_resized = imresize(convert.(RGB{N0f8}, image), (sz, sz)) a = permuteddimsview(channelview(image_resized), (2, 3, 1)) end p = getobs(files, 1) image = loadfile(p) label_func(path) = match(r"^(.*)_\d+\.jpg$", pathname(path))[1] label_func(p) labels = map(label_func, files) length(unique(labels)) data = mapobs(files) do file return (loadfile(file), label_func(file)) end idxs = shuffle(1:length(files)) cut = round(Int, 0.8 * length(idxs)) trainidxs, valididxs = idxs[1:cut], idxs[cut+1:end] trainfiles, validfiles = files[trainidxs], files[valididxs] summary.((trainfiles, validfiles)) import FastAI.MLUtils struct SiamesePairs labels same other valid end function SiamesePairs(labels; valid=false) ulabels = unique(labels) same = Dict( label => [i for (i, l) in enumerate(labels) if l == label] for label in ulabels) other = Dict( label => [i for (i, l) in enumerate(labels) if l != label] for label in ulabels) return SiamesePairs(labels, same, other, valid) end function MLUtils.getobs(si::SiamesePairs, idx::Int) rng = si.valid ? MersenneTwister(idx) : Random.GLOBAL_RNG if rand(rng) > 0.5 return ((idx, rand(rng, si.same[si.labels[idx]])), true) else return ((idx, rand(rng, si.other[si.labels[idx]])), false) end end MLUtils.numobs(si::SiamesePairs) = length(si.labels) function siamesedata(files; valid = false, transformfn = identity) labels = map(label_func, files) si = SiamesePairs(labels; valid = valid) return mapobs(si) do obs (i, j), same = obs image1 = transformfn(loadfile(getobs(files, i))) image2 = transformfn(loadfile(getobs(files, j))) return ((image1, image2), same) end end traindata = siamesedata(trainfiles; transformfn=transform_image) validdata = siamesedata(validfiles; transformfn=transform_image, valid=true); traindl = FastAI.MLUtils.DataLoader(traindata, 16)
ERROR: MethodError: no method matching MLUtils.DataLoader(::MLUtils.MappedData{:auto, var"#75#76"{typeof(transform_image), ObsView{MLDatasets.FileDataset{typeof(identity), String}, Vector{Int64}}}, SiamesePairs}, ::Int64)
I was trying to recreate the Siamese example in the docs and could not figure out why I am getting this error? And how do I fix this?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
ERROR: MethodError: no method matching MLUtils.DataLoader(::MLUtils.MappedData{:auto, var"#75#76"{typeof(transform_image), ObsView{MLDatasets.FileDataset{typeof(identity), String}, Vector{Int64}}}, SiamesePairs}, ::Int64)
I was trying to recreate the Siamese example in the docs and could not figure out why I am getting this error? And how do I fix this?
The text was updated successfully, but these errors were encountered: