-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.R
803 lines (770 loc) · 27.4 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# Load Libraries
library(shinydashboard)
library(shiny)
library(shinyBS)
library(shinyWidgets)
library(boastUtils)
library(ggplot2)
# Define global constants and functions ----
## none at this time
# Define the UI ----
ui <- list(
## app page ----
dashboardPage(
skin = "yellow",
dashboardHeader(
titleWidth = 250,
title = "Regression Lines",
tags$li(class = "dropdown", actionLink("info", icon("info"))),
tags$li(
class = "dropdown",
boastUtils::surveyLink(name = "Regression_lines")
),
tags$li(
class = "dropdown",
tags$a(
id = "home",
href = 'https://shinyapps.science.psu.edu/',
icon("house")
)
)
),
## Sidebar ----
dashboardSidebar(
width = 250,
sidebarMenu(
id = "pages",
menuItem("Overview", tabName = "overview", icon = icon("gauge-high")),
menuItem("Prerequisites", tabName = "prerequisites", icon = icon("book")),
menuItem("Challenge", tabName = "challenge", icon = icon("gears")),
menuItem("References", tabName = "References", icon = icon("leanpub"))
),
tags$div(
class = "sidebar-logo",
boastUtils::sidebarFooter()
)
),
## Body ----
dashboardBody(
tabItems(
### Overview ----
tabItem(
tabName = "overview",
h1("Regression Lines"),
p(
"In this app, you will explore how correlation and
regression lines relate to the points on a scatterplot."
),
br(),
h2("Instructions"),
tags$ol(
tags$li(
"Head to the 'Prerequisites' page to review concepts related to
correlation and regression lines."
),
tags$li(
"When ready, make your way to the 'Challenge' page to further explore
these concepts."
),
tags$li(
"There, you can create points by clicking on the scatterplot and create
your own line by adjusting the sliders for slope and intercept."
),
tags$li("Use these interactive elements to mimic the situation that
is presented to complete the challenges.")
),
br(),
div(
style = "text-align: center;",
bsButton(
inputId = "goToPrereq",
label = "Prerequisites",
icon = icon("book"),
size = "large",
)
),
#Acknowledgements
br(),
br(),
h2("Acknowledgements"),
p(
"This app was developed and coded by Caihui Xiao.
The app was further updated by Zhiliang Zhang and Jiajun Gao
in June 2018, Daehoon Gwak in July 2020, Sean Burke in June
2023, and by Nathan Pechulis in July 2024.",
br(),
br(),
br(),
"Cite this app as:",
br(),
citeApp(),
br(),
br(),
div(class = "updated", "Last Update: 7/8/2024 by NP.")
)
),
### Prerequisites ----
tabItem(
withMathJax(),
tabName = "prerequisites",
h2("Prerequisites"),
p("To get the most out of this app, review the following information
about correlation and regression lines."),
br(),
box(
title = tags$strong("Correlation"),
tags$ul(
tags$li(
"Correlation measures the strength of the linear association
between two variables/attributes and is therefore not appropriate
for non-linear relationships. Correlations are always values
between –1 and +1, inclusive. A correlation of –1 or +1 indicates
that we have a perfect linear relationship; every point lies on
the regression line. Correlation is strongly affected by outliers."
),
tags$li(
"Correlation does not change when you change the unit of
measurement. For instance, if you find the correlation between
elementary school children's height (in inches) and their ages
(years), that value will be the same if you convert everyone's
height to centimeters and/or their ages to days. More generally,
if you transform every observation's values by adding,
subtracting, multiplying, and/or dividing by the same number,
the correlation will remain the same."
)
),
collapsible = TRUE,
collapsed = TRUE,
width = 12
),
box(
title = tags$strong("Regression Lines"),
tags$ul(
tags$li(
"A regression line is the graph of a linear function thought to
describe how a response variable (typically \\(Y\\)) changes as
an explanatory variable (typically \\(X\\)) changes. The regression
line's linear form focuses on the", tags$em("predicted value"),
"of the response (\\(\\widehat{Y}\\)). Thus, when you know that
\\(X\\) takes on a specific value, \\(x\\), you can find the
predicted value with the formula: \\[\\widehat{Y}=a+b*x\\]"
),
tags$li(
"In the above formula, \\(a\\) is an intercept--what you would
predict for \\(Y\\) when \\(x = 0\\). The \\(b\\) is the slope or
rate of change of \\(Y\\) with respect to \\(X\\). The slope tells
you how many times the change in \\(Y\\) is as large as the
corresponding change in \\(X\\). The sign of the slope will always
match the sign of the correlation value."
),
tags$li(
"The regression line is the graph of the linear function that
minimizes the vertical distance between the line and each of the
cases (data points). This results in the smallest standard deviation
for the error (i.e., the vertical distance between the line and
each case). Recall that standard deviation measures variability
and we want to keep the variability around the line as small as
possible."
),
tags$li(
"The regression line is not appropriate for making predictions
when",
tags$ul(
tags$li("there is a non-linear relationship,"),
tags$li("when there are outliers driving the prediction and/or
relationship, or"),
tags$li("when you are predicting far beyond the range of the
data.")
)
)
),
collapsible = TRUE,
collapsed = TRUE,
width = 12
),
br(),
br()
),
### Challenge ----
tabItem(
tabName = "challenge",
h2("Regression Line and Correlation on a Scatterplot"),
p(
"Use the interactive graph below to mimic the challenge that is being
proposed. To begin, create points by simply clicking on the graph and
adjust the values for your line's slope/intercept (if a line is needed)
while also checking the 'Create your own line' box. Then, you can
utilize the given feedback from the other two checkboxes to get as
close to the prompt as you can. Try your best to complete as many of
the challenges as you can; good luck!"
),
br(),
h3("Challenge"),
uiOutput(
outputId = "question",
class = "largerFont"
),
br(),
fluidRow(
column(
width = 4,
wellPanel(
sliderInput(
inputId = "intercept",
label = "Choose the intercept",
min = -10,
max = 10,
value = 5,
step = 0.01
),
sliderInput(
inputId = "slope",
label = "Choose the slope",
min = -10,
max = 10,
value = 2,
step = 0.01
),
checkboxInput(
inputId = "userLine",
label = "Create your own line (red)",
value = FALSE
),
checkboxInput(
inputId = "regressionLine",
label = "Show regression line (blue)",
value = FALSE
),
checkboxInput(
inputId = "correlation",
label = "Show correlation value",
value = FALSE
),
bsButton(
inputId = "newChallenge",
label = "New Challenge",
icon = icon("forward"),
size = "large"
),
bsButton(
inputId = "undoButton",
label = "Undo Point",
icon = icon("undo"),
size = "large",
disabled = TRUE
),
bsButton(
inputId = "reset",
label = "Reset",
icon = icon("eraser"),
size = "large"
)
)
),
column(
width = 8,
plotOutput(
outputId = "scatterPlot",
click = "clicks"
),
br(),
h4("Feedback"),
textOutput('feedback'),
textOutput('userFunction'),
textOutput('regEqn'),
textOutput('correlation')
)
)
),
### References ----
tabItem(
tabName = "References",
h2("References"),
p( #shinyBS
class = "hangingindent",
"Bailey, E. (2022). shinyBS: Twitter bootstrap components for shiny.
(v 0.61.1). [R package]. Available from
https://CRAN.R-project.org/package=shinyBS"
),
p( #Boast Utilities
class = "hangingindent",
"Carey, R. and Hatfield, N. J. (2024). boastUtils: BOAST utlities.
(v 0.1.12.2). [R package]. Available from
https://github.com/EducationShinyAppTeam/boastUtils"
),
p( #shinydashboard
class = "hangingindent",
"Chang, W., and Borges Ribeiro, B. (2021). shinydashboard: Create
dashboards with 'shiny'. (v 0.7.2) [R package]. Available from
https://CRAN.R-project.org/package=shinydashboard"
),
p( #shiny
class = "hangingindent",
"Chang, W., Cheng J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y.,
Allen, J., McPherson, J., Dipert, A., and Borges, B. (2024). shiny:
Web application framework for R. (v 1.8.1.1). [R package]. Available
from https://CRAN.R-project.org/package=shiny"
),
p( #shinyWidgets
class = "hangingindent",
"Perrier, V., Meyer, F., and Granjon, D. (2024). shinyWidgets: Custom
inputs widgets for shiny. (v 0.8.6). [R package]. Available from
https://CRAN.R-project.org/package=shinyWidgets"
),
p( #reference for ideas
class = "hangingindent",
"Statistical Applets: Correlation and regression. (n.d.). [Web applet;
original idea]. Available from
http://digitalfirst.bfwpub.com/stats_applet/generic_stats_applet_5_correg.html"
),
p( # ggplot2
class = "hangingindent",
"Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
Springer-Verlag:New York. (v 3.5.1) [R package]. Available from
https://ggplot2.tidyverse.org"
),
br(),
br(),
br(),
boastUtils::copyrightInfo()
)
)
)
)
)
# Define the Server ----
server <- function(input, output,session) {
## Info Button ----
observeEvent(
eventExpr = input$info,
handlerExpr = {
sendSweetAlert(
session = session,
title = "Information",
type = "info",
text = "This app will allow you to explore the connection between the data
points, their correlation, and the regression line through challenges
using an interactive scatterplot."
)
}
)
## Create Reactive Values ----
userData <- reactiveVal(NULL)
challengeId <- reactiveVal(sample(x = 1:11, size = 1))
## Prerequisites button ----
observeEvent(
eventExpr = input$goToPrereq,
handlerExpr = {
updateTabItems(
session = session,
inputId = "pages",
selected = "prerequisites"
)
}
)
## New Challenge button ----
observeEvent(
eventExpr = input$newChallenge,
handlerExpr = {
### Reset values
userData(NULL)
challengeId(sample(x = 1:11, size = 1))
### Update inputs
updateSliderInput(
session = session,
inputId = "slope",
value = 0
)
updateSliderInput(
session = session,
inputId = "intercept",
value = 0
)
updateCheckboxInput(
session = session,
inputId = "userLine",
value = FALSE
)
updateCheckboxInput(
session = session,
inputId = "correlation",
value = FALSE
)
updateCheckboxInput(
session = session,
inputId = "regressionLine",
value = FALSE
)
}
)
## Reset Button ----
observeEvent(
eventExpr = input$reset,
handlerExpr = {
### Reset values
userData(NULL)
#Update inputs
updateSliderInput(
session = session,
inputId = "slope",
value = 0
)
updateSliderInput(
session = session,
inputId = "intercept",
value = 0
)
updateCheckboxInput(
session = session,
inputId = "userLine",
value = FALSE
)
updateCheckboxInput(
session = session,
inputId = "correlation",
value = FALSE
)
updateCheckboxInput(
session = session,
inputId = "regressionLine",
value = FALSE
)
}
)
## Generate and Display Questions ----
observeEvent(
eventExpr = challengeId(),
handlerExpr = {
output$question <- renderText(
expr = {
switch(
EXPR = challengeId(), # integer selecting element
"Draw some points on a scatterplot that have y = 3 – 2x as their
regression and a correlation more than - 0.8. (Check the “Regression
line” box to see how you did.)",
"Draw some points on a scatterplot that have y = 2 + 3x as their
regression and a correlation less than 0.5. (Check the “Regression
line” box to see how you did.)",
"Draw some points on a scatterplot that have y = 2x + 1 as their
regression. (Check the “Show regression” box to see how you did.)",
"Draw your own line with the equation y = 3 – 2x and then add some
points that have that as their regression. (Check the “Show
regression” box to see how you did.)",
"Draw your own line with the equation y = 2 + 3x and then add some
points that have that as their regression. (Check the “Show
regression” box to see how you did.)",
"Create some points with a correlation of 0.6 and then draw your own
line that is your guess at the regression line. (Check the “Show
regression” box to see how you did.)",
"Create some points with a correlation of -0.5 and then draw your
own line that is your guess at the regression line. (Check the “Show
regression” box to see how you did.)",
"Create some points with a correlation of -0.2 and then draw your own
line that is your guess at the regression line. (Check the “Show
regression” box to see how you did.)",
"Create some points that have a strong non-linear relationship, but
a correlation between -0.1 and 0.1.",
"Create some points that have a strong non-linear relationship, but
a correlation between 0.4 and 0.6.",
"Create some points that follow a roughly linear pattern and a
correlation of 0.5 and then add an outlier to make the correlation
go down to 0."
)
}
)
}
)
## Listen for clicks ----
observeEvent(
eventExpr = input$clicks,
handlerExpr = {
if (is.null(userData())) {
userData(data.frame(x = input$clicks$x, y = input$clicks$y))
} else if (nrow(userData()) < 1) {
userData(data.frame(x = input$clicks$x, y = input$clicks$y))
} else {
userData(rbind(userData(), c(input$clicks$x, input$clicks$y)))
}
}
)
## Enable/Disable Undo ----
observeEvent(
eventExpr = userData(),
handlerExpr = {
if (is.null(userData())) {
updateButton(
session = session,
inputId = "undoButton",
disabled = TRUE
)
} else if (nrow(userData()) == 0) {
## separate null case from zero row case to prevent app from crashing
updateButton(
session = session,
inputId = "undoButton",
disabled = TRUE
)
} else {
updateButton(
session = session,
inputId = "undoButton",
disabled = FALSE
)
}
},
ignoreNULL = FALSE,
ignoreInit = TRUE
)
## Undo Last Point Button ----
observeEvent(
eventExpr = input$undoButton,
handlerExpr = {
# Remove the last row from the dataframe
userData(userData()[-nrow(userData()),])
}
)
## Render Scatter Plot ----
observeEvent(
eventExpr = c(userData(), input$userLine, input$intercept, input$slope,
input$regressionLine),
handlerExpr = {
### Capture Data ----
if (is.null(userData())) {
plotData <- data.frame(x = numeric(), y = numeric())
} else if (nrow(userData()) < 1) {
plotData <- data.frame(x = numeric(), y = numeric())
} else {
plotData <- userData()
}
### Generate base plot ----
basePlot <- ggplot(
data = plotData,
mapping = aes(x = x, y = y)
) +
geom_point(
size = 4.5,
color = boastPalette[1]
) +
scale_x_continuous(
breaks = seq(-5, 5, 2),
limits = c(-5,5),
expand = expansion(mult = 0, add = 0)
) +
scale_y_continuous(
breaks = seq(-5, 5, 2),
limits = c(-5,5),
expand = expansion(mult = 0, add = 0)
) +
labs(x = "X", y = "Y") +
theme_bw(base_size = 20)
### Add user's line ----
if (input$userLine) {
basePlot <- basePlot +
geom_abline(
intercept = input$intercept,
slope = input$slope,
col = boastUtils::psuPalette[2],
lwd = 1.25
)
}
### Add regression line ----
if (input$regressionLine) {
basePlot <- basePlot +
geom_smooth(
method = "lm",
formula = y ~ x,
se = FALSE,
fullrange = TRUE,
color = boastPalette[5],
linewidth = 1.25,
na.rm = TRUE
)
}
### Build Alt text ----
if (is.null(userData())) {
altText <- "An empty plot going from -5 to 5 in both dimensions."
} else if (nrow(userData()) < 1) {
altText <- "An empty plot going from -5 to 5 in both dimensions."
} else if (nrow(userData()) < 3) {
altText <- paste0("A scatter plot showing ", nrow(userData()), " points")
} else {
sampleCor <- round(cor(userData())["x", "y"], digits = 2)
trendMsg <- ifelse(
test = sampleCor >= -0.1 && sampleCor <= 0.1,
yes = "no meaningful trend.",
no = ifelse(
test = sampleCor > 0.1,
yes = "a positive trend.",
no = "a negative trend."
)
)
altText <- paste0("A scatter plot showing ", nrow(userData()),
" points and ", trendMsg)
}
if (input$userLine) {
altText <- paste(altText, "The user specified line also appears.")
}
if (input$regressionLine) {
altText <- paste(altText, "The regression line also appears.")
}
output$scatterPlot <- renderPlot(
expr = basePlot,
alt = altText
)
}
)
## Display feedback messages ----
### User's Linear Function ----
observeEvent(
eventExpr = c(input$userLine, input$intercept, input$slope),
handlerExpr = {
if (!input$userLine) {
message <- NULL
} else {
message <- paste(
"Equation of your line: y =",
input$intercept,
"+ (",
input$slope,
") * x"
)
}
output$userFunction <- renderText(expr = message)
}
)
### Regression Equation ----
observeEvent(
eventExpr = c(input$regressionLine, userData()),
handlerExpr = {
if (!input$regressionLine) {
message <- NULL
} else if (is.null(userData())) {
message <- "You must plot points first."
} else if (nrow(userData()) <= 1) {
message <- "More points are needed for a regression line."
} else {
model1 <- lm(formula = y ~ x, data = userData())
message <- paste(
"Regression Equataion: y =",
round(coef(model1)[1], digits = 2),
"+ (",
round(coef(model1)[2], digits = 2),
") * x"
)
}
output$regEqn <- renderText(expr = message)
}
)
### Sample Correlation ----
observeEvent(
eventExpr = c(input$correlation, userData()),
handlerExpr = {
if (!input$correlation) {
message <- NULL
} else if (is.null(userData())) {
message <- "You must plot points first."
} else if (nrow(userData()) < 3) {
message <- "Create more points to display the correlation value."
} else {
message <- paste(
"Correlation =",
round(cor(userData())["x", "y"], digits = 2)
)
}
output$correlation <- renderText(expr = message)
}
)
### Challenge feedback ----
observeEvent(
eventExpr = c(userData(), challengeId()),
handlerExpr = {
if (is.null(userData())) {
message <- "Please click within the plot to add points."
} else if (nrow(userData()) < 3) {
message <- "Please plot three or more points."
} else {
if (challengeId() == 1) {
message <- ifelse(
test = round(cor(userData())["x", "y"], digits = 2) > -0.8,
yes = "You're on the correct path. Please check the 'Regression line'
box to see how you did for regression.",
no = "Sorry, you're sample correlation is too small. Please add/remove
points and keep trying."
)
} else if (challengeId() == 2) {
message <- ifelse(
test = round(cor(userData())["x", "y"], digits = 2) < 0.5,
yes = "You're on the correct path. Please check the 'Regression line'
box to see how you did for regression.",
no = "Sorry, you're sample correlation is too large. Please add/remove
points and keep trying."
)
} else if (challengeId() == 3) {
message <- "Please check the 'Regression line' box to see how you did
for regression."
} else if (challengeId() == 4) {
message <- "Be sure to draw the line first. Please check the 'Regression
line' box to see how you did for regression."
} else if (challengeId() == 5) {
message <- "Be sure to draw the line first. Please check the 'Regression
line' box to see how you did for regression."
} else if (challengeId() == 6) {
message <- ifelse(
test = round(cor(userData())["x", "y"], digits = 1) == 0.6,
yes = "Your correlation is close enough. Use the controls to draw your
guess for the regression line. Please check the 'Regression line' box
to see how you did for regression.",
no = "Your correlation isn't close enough to 0.6. Please add/remove
points and keep trying. You can use the 'Show correlation value' button
to see the current sample correlation value."
)
} else if (challengeId() == 7) {
message <- ifelse(
test = round(cor(userData())["x", "y"], digits = 1) == -0.5,
yes = "Your correlation is close enough. Use the controls to draw your
guess for the regression line. Please check the 'Regression line' box
to see how you did for regression.",
no = "Your correlation isn't close enough to -0.5. Please add/remove
points and keep trying. You can use the 'Show correlation value' button
to see the current sample correlation value."
)
} else if (challengeId() == 8) {
message <- ifelse(
test = round(cor(userData())["x", "y"], digits = 1) == -0.2,
yes = "Your correlation is close enough. Use the controls to draw your
guess for the regression line. Please check the 'Regression line' box
to see how you did for regression.",
no = "Your correlation isn't close enough to -0.5. Please add/remove
points and keep trying. You can use the 'Show correlation value' button
to see the current sample correlation value."
)
} else if (challengeId() == 9) {
sampleCor <- round(cor(userData())["x", "y"], digits = 1)
message <- ifelse(
test = sampleCor >= -0.1 && sampleCor <= 0.1,
yes = "Your correlation is within the bounds. Make sure that your graph
shows a strong non-linear relationship.",
no = "Your correlation isn't between -0.1 and 0.1. Add/remove points
and keep trying. Make sure that your graph shows a non-linear relationship."
)
} else if (challengeId() == 10) {
sampleCor <- round(cor(userData())["x", "y"], digits = 1)
message <- ifelse(
test = sampleCor >= 0.4 && sampleCor <= 0.6,
yes = "Your correlation is within the bounds. Make sure that your graph
shows a strong non-linear relationship.",
no = "Your correlation isn't between -0.1 and 0.1. Add/remove points
and keep trying. Make sure that your graph shows a non-linear relationship."
)
} else if (challengeId() == 11) {
message <- "Use the check boxes to check your work."
} else {
print("ERROR IN CHALLENGE ID")
}
}
output$feedback <- renderText(expr = message)
}
)
}
# Boast App Call ----
boastUtils::boastApp(ui = ui, server = server)