-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathattack.py
744 lines (634 loc) · 36.8 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
import _init_path
import argparse
import datetime
import glob
import os
import re
import time
import copy
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import tqdm
from eval_utils import eval_utils
from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from pcdet.datasets import build_dataloader
from pcdet.models import build_network
from pcdet.models import load_data_to_gpu
from pcdet.utils import common_utils
from pcdet.models import build_network, model_fn_decorator
from torch.autograd import Variable
from pcdet.datasets.processor import data_processor
from sklearn.cluster import KMeans
import pandas as pd
def statistics_info(cfg, ret_dict, metric, disp_dict):
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
metric['recall_roi_%s' % str(cur_thresh)] += ret_dict.get('roi_%s' % str(cur_thresh), 0)
metric['recall_rcnn_%s' % str(cur_thresh)] += ret_dict.get('rcnn_%s' % str(cur_thresh), 0)
metric['gt_num'] += ret_dict.get('gt', 0)
min_thresh = cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST[0]
disp_dict['recall_%s' % str(min_thresh)] = \
'(%d, %d) / %d' % (metric['recall_roi_%s' % str(min_thresh)], metric['recall_rcnn_%s' % str(min_thresh)], metric['gt_num'])
def clip_eta(grad, eps, norm=np.inf):
"""
Solves for the optimal input to a linear function under a norm constraint.
Optimal_perturbation = argmax_{eta, ||eta||_{norm} < eps} dot(eta, grad)
:param grad: Tensor, shape (N, d_1, ...). Batch of gradients
:param eps: float. Scalar specifying size of constraint region
:param norm: np.inf, 1, or 2. Order of norm constraint.
:returns: Tensor, shape (N, d_1, ...). Optimal perturbation
"""
grad_shape = grad.shape
grad_shape_len = len(grad.shape)
if grad_shape_len == 3:
grad = grad.view(-1, 3)
red_ind = list(range(1, len(grad.size())))
avoid_zero_div = torch.tensor(1e-36, dtype=grad.dtype, device=grad.device)
if norm == np.inf:
# Take sign of gradient
optimal_perturbation = torch.sign(grad)
elif norm == 1:
abs_grad = torch.abs(grad)
sign = torch.sign(grad)
red_ind = list(range(1, len(grad.size())))
ori_shape = [1] * len(grad.size())
ori_shape[0] = grad.size(0)
max_abs_grad, _ = torch.max(abs_grad.view(grad.size(0), -1), 1)
max_mask = abs_grad.eq(max_abs_grad.view(ori_shape)).to(torch.float)
num_ties = max_mask
for red_scalar in red_ind:
num_ties = torch.sum(num_ties, red_scalar, keepdim=True)
optimal_perturbation = sign * max_mask / num_ties
# TODO integrate below to a test file
# check that the optimal perturbations have been correctly computed
opt_pert_norm = optimal_perturbation.abs().sum(dim=red_ind)
assert torch.all(opt_pert_norm == torch.ones_like(opt_pert_norm))
elif norm == 2:
square = torch.sum(grad ** 2, red_ind, keepdim=True)
optimal_perturbation = grad / torch.max(torch.sqrt(square), avoid_zero_div)
# TODO integrate below to a test file
# check that the optimal perturbations have been correctly computed
opt_pert_norm = (
optimal_perturbation.pow(2).sum(dim=red_ind, keepdim=True).sqrt()
)
one_mask = (square <= avoid_zero_div).to(torch.float) * opt_pert_norm + (
square > avoid_zero_div
).to(torch.float)
assert torch.allclose(opt_pert_norm, one_mask, rtol=1e-05, atol=1e-08)
else:
raise NotImplementedError(
"Only L-inf, L1 and L2 norms are " "currently implemented."
)
# Scale perturbation to be the solution for the norm=eps rather than
# norm=1 problem
scaled_perturbation = eps * optimal_perturbation
if grad_shape_len == 3:
scaled_perturbation = scaled_perturbation.view(grad_shape)
return scaled_perturbation
def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, args, dist_test=False, save_to_file=False, result_dir=None):
result_dir.mkdir(parents=True, exist_ok=True)
final_output_dir = result_dir / 'final_result' / 'data'
if save_to_file:
final_output_dir.mkdir(parents=True, exist_ok=True)
metric = {
'gt_num': 0,
}
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
metric['recall_roi_%s' % str(cur_thresh)] = 0
metric['recall_rcnn_%s' % str(cur_thresh)] = 0
dataset = dataloader.dataset
class_names = dataset.class_names
det_annos = []
logger.info('*************** EPOCH %s EVALUATION *****************' % epoch_id)
if dist_test:
num_gpus = torch.cuda.device_count()
local_rank = cfg.LOCAL_RANK % num_gpus
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[local_rank],
broadcast_buffers=False
)
if cfg.LOCAL_RANK == 0:
progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval', dynamic_ncols=True)
start_time = time.time()
# define some hyper-parameters
key = args.key
iter_eps = args.eps/30
nb_iter = 40
rand_init = True
eps = args.eps # 0.3
norm = 2 # np.inf 2
decay_factor = 1
clip_min = None
clip_max = None
model_func=model_fn_decorator()
point_cloud_range = cfg.DATA_CONFIG.POINT_CLOUD_RANGE
if key == 'voxels':
max_num_points_per_voxel = [x['MAX_POINTS_PER_VOXEL'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]
max_num_voxels = [x['MAX_NUMBER_OF_VOXELS'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]['test']
voxel_size = [x['VOXEL_SIZE'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]
num_point_features=4 if 'kitti' in args.cfg_file else 5
voxel_generator = data_processor.VoxelGeneratorWrapper(
vsize_xyz=voxel_size,
coors_range_xyz=point_cloud_range,
num_point_features=num_point_features+1,
max_num_points_per_voxel=max_num_points_per_voxel,
max_num_voxels=max_num_voxels,
)
elif 'pv_rcnn' in args.cfg_file:
max_num_points_per_voxel = [x['MAX_POINTS_PER_VOXEL'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]
max_num_voxels = [x['MAX_NUMBER_OF_VOXELS'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]['test']
voxel_size = [x['VOXEL_SIZE'] for x in cfg.DATA_CONFIG.DATA_PROCESSOR if x['NAME']=='transform_points_to_voxels'][0]
num_point_features=4 if 'kitti' in args.cfg_file else 5
voxel_generator = data_processor.VoxelGeneratorWrapper(
vsize_xyz=voxel_size,
coors_range_xyz=point_cloud_range,
num_point_features=num_point_features,
max_num_points_per_voxel=max_num_points_per_voxel,
max_num_voxels=max_num_voxels,
)
if args.attack == 'FGSM': # FGSM
iter_eps = args.eps
rand_init = False
nb_iter = 1
if args.attack == 'MI':
rand_init = False
for i, batch_dict in enumerate(dataloader):
load_data_to_gpu(batch_dict)
# batch_dict['points'].requires_grad = True
# points_origin = batch_dict['points'].clone()
if key == 'voxels':
# key_origin = batch_dict[key][:, :, :3].clone()
points_flatten = batch_dict[key].view(-1, num_point_features)
points_sum = (points_flatten.abs()).sum(1)
key_origin = points_flatten[points_sum!=0].clone()
points_origin = key_origin.cpu().numpy()
# print("### ori valid points num = ", len(points_origin))
else:
key_origin = batch_dict[key][:, 1:4].clone()
key_origin.requires_grad = False # important
if rand_init:
# perturbation = torch.zeros_like(points_origin[:, 1:5]).uniform_(-eps, eps).cuda(points_origin.device)
if key=='voxels':
perturbation = torch.zeros_like(key_origin[:, :3]).uniform_(-eps, eps).cuda(key_origin.device)
else:
perturbation = torch.zeros_like(key_origin).uniform_(-eps, eps).cuda(key_origin.device)
perturbation = clip_eta(perturbation, eps, norm)
if key == 'voxels':
points_valid = copy.deepcopy(points_origin)
points_valid[:, :3] = points_valid[:, :3] + perturbation.cpu().numpy()
# re-voxelize
# points_flatten = batch_dict[key].view(-1, num_point_features)
# points_flatten[points_flatten[:, 2]>=1, 2] = 1-1e-6
# points_sum = points_flatten.sum(1)
# points_valid = points_flatten[points_sum!=0].cpu().numpy()
points_valid[points_valid[:, 0]>=point_cloud_range[3], 0] = point_cloud_range[3] - 1e-6
points_valid[points_valid[:, 1]>=point_cloud_range[4], 1] = point_cloud_range[4] - 1e-6
points_valid[points_valid[:, 2]>=point_cloud_range[5], 2] = point_cloud_range[5] - 1e-6
points_valid[points_valid[:, 0]<point_cloud_range[0], 0] = point_cloud_range[0]
points_valid[points_valid[:, 1]<point_cloud_range[1], 1] = point_cloud_range[1]
points_valid[points_valid[:, 2]<point_cloud_range[2], 2] = point_cloud_range[2]
points_valid = np.concatenate([points_valid, np.arange(len(points_valid)).reshape(-1,1)], axis=1)
voxels, coordinates, num_points = voxel_generator.generate(points_valid)
batch_dict['voxels'] = torch.from_numpy(voxels[:, :, :num_point_features]).float().cuda(key_origin.device)
# TODO: get the index of item in voxels
pad_batch_indexs = np.zeros((len(voxels),1))
coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
batch_dict['voxel_coords'] = torch.from_numpy(coordinates).float().cuda(key_origin.device)
batch_dict['voxel_num_points'] = torch.from_numpy(num_points).float().cuda(key_origin.device)
else:
batch_dict[key][:, 1:4] = batch_dict[key][:, 1:4] + perturbation
if 'pv_rcnn' in args.cfg_file:
voxels, coordinates, num_points = voxel_generator.generate(batch_dict[key][:, 1:].cpu().numpy())
batch_dict['voxels'] = torch.from_numpy(voxels[:, :, :num_point_features]).float().cuda(key_origin.device)
pad_batch_indexs = np.zeros((len(voxels),1))
coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
batch_dict['voxel_coords'] = torch.from_numpy(coordinates).float().cuda(key_origin.device)
batch_dict['voxel_num_points'] = torch.from_numpy(num_points).float().cuda(key_origin.device)
else:
if key=='voxels':
# points_with_index = np.concatenate([points_origin, np.arange(len(points_origin)).reshape(-1,1)], axis=1)
# voxels, coordinates, num_points = voxel_generator.generate(points_with_index)
voxel_points_index = torch.zeros(batch_dict['voxels'].shape[0] * batch_dict['voxels'].shape[1], device=key_origin.device)
valid_points_index = torch.arange(len(key_origin), device=key_origin.device)
try:
voxel_points_index[torch.sum(batch_dict['voxels'].abs(), dim=2).flatten().nonzero().flatten()] = valid_points_index.float()
except:
import pdb;pdb.set_trace()
voxels = torch.cat([batch_dict[key], voxel_points_index.view(batch_dict['voxels'].shape[0], batch_dict['voxels'].shape[1], 1)], axis=2)
voxels = voxels.cpu().numpy()
model.train()
for m in model.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.eval()
# print("### batch_dict voxels shape", batch_dict[key].shape)
batch_dict[key].requires_grad = True
if key=='voxels':
g = torch.zeros_like(batch_dict[key][:, :, :3]).to(key_origin.device)
else:
g = torch.zeros_like(key_origin).to(key_origin.device)
for i in range(nb_iter):
# print("### iteration", i)
for cur_module in model.module_list:
# print("## iterate", cur_module)
batch_dict = cur_module(batch_dict)
# loss, tb_dict = model.dense_head.get_loss()
loss, tb_dict, _ = model.get_training_loss()
# add distance loss of voxels and points
# criterion = nn.MSELoss(reduction='mean')
# if key == 'voxels':
# loss_distance = criterion(batch_dict[key][:, :, :3], key_origin)
# else:
# loss_distance = criterion(batch_dict[key][:, 1:4], key_origin)
# loss = loss + loss_distance
model.zero_grad()
batch_dict[key].retain_grad()
loss.backward(retain_graph=True)
grad = batch_dict[key].grad.data
if key=='voxels':
grad[batch_dict[key]==0] = 0
grad = grad[:, :, :3]
else:
grad = grad[:, 1:4]
# adhoc, replace the grad with random variables
# grad_zero_mask = grad==0
# grad = torch.zeros_like(grad).uniform_(-0.1, 0.1).cuda(key_origin.device)
# grad[grad_zero_mask] = 0
if 'second' in args.cfg_file or 'voxel_rcnn' in args.cfg_file or 'PartA2' in args.cfg_file:
grad = - grad
if args.attack == 'MI':
g = decay_factor * g + grad/torch.norm(grad, p=1)
perturbation = clip_eta(g, iter_eps, norm)
else:
perturbation = clip_eta(grad, iter_eps, norm)
# perturbation = torch.clamp(grad, -eps, eps)
# perturbation = - perturbation
# perturbation = torch.zeros_like(perturbation)
batch_dict[key].requires_grad = False
if key == 'voxels':
# perturbation = batch_dict[key][:, :, :3] + perturbation - key_origin
# perturbation = clip_eta(perturbation, eps, norm)
# batch_dict[key][:, :, :3] = key_origin + perturbation
batch_dict[key][:, :, :3] = batch_dict[key][:, :, :3] + perturbation
if args.attack != 'MI' or (args.attack == 'MI' and i==nb_iter-1):
voxels_with_pointindex = torch.cat([batch_dict[key], torch.from_numpy(voxels[:, :, -1:]).float().cuda(key_origin.device)], axis=2)
points_flatten = voxels_with_pointindex.view(-1, num_point_features+1)
points_sum = (points_flatten.abs()).sum(1)
points_valid = points_flatten[points_sum!=0].cpu().numpy()
# points_valid = points_valid[points_valid[:,4].argsort()]
# print("###, iter=", i)
# import pdb;pdb.set_trace()
perturbation = points_valid[:, :3] - points_origin[points_valid[:, -1].astype(int), :3]
##################################################### second clip_eta
perturbation = clip_eta(torch.from_numpy(perturbation), eps, norm).numpy()
# perturbation = np.clip(perturbation, -eps, eps)
# print('### perturbation', perturbation)
points_valid[:, :3] = points_origin[points_valid[:, -1].astype(int), :3] + perturbation
# limit the points in the point cloud range
points_valid[points_valid[:, 0]>=point_cloud_range[3], 0] = point_cloud_range[3] - 1e-6
points_valid[points_valid[:, 1]>=point_cloud_range[4], 1] = point_cloud_range[4] - 1e-6
points_valid[points_valid[:, 2]>=point_cloud_range[5], 2] = point_cloud_range[5] - 1e-6
points_valid[points_valid[:, 0]<point_cloud_range[0], 0] = point_cloud_range[0]
points_valid[points_valid[:, 1]<point_cloud_range[1], 1] = point_cloud_range[1]
points_valid[points_valid[:, 2]<point_cloud_range[2], 2] = point_cloud_range[2]
# print("### Before voxelize points_valid.shape", points_valid.shape, points_valid.max(0), points_valid.min(0))
voxels, coordinates, num_points = voxel_generator.generate(points_valid)
batch_dict['voxels'] = torch.from_numpy(voxels[:, :, :num_point_features]).float().cuda(key_origin.device)
pad_batch_indexs = np.zeros((len(voxels),1))
coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
batch_dict['voxel_coords'] = torch.from_numpy(coordinates).float().cuda(key_origin.device)
batch_dict['voxel_num_points'] = torch.from_numpy(num_points).float().cuda(key_origin.device)
# print("### after perturbation and re-voxelization, valid points num = ", (points_sum!=0).sum())
else:
perturbation = batch_dict[key][:, 1:4] + perturbation - key_origin
# perturbation = torch.clamp(perturbation, -eps, eps)
perturbation = clip_eta(perturbation, eps, norm)
perturbated_point_coords = key_origin + perturbation
batch_dict[key][:, 1:4] = perturbated_point_coords
if 'pv_rcnn' in args.cfg_file:
voxels, coordinates, num_points = voxel_generator.generate(batch_dict[key][:, 1:].cpu().numpy())
batch_dict['voxels'] = torch.from_numpy(voxels[:, :, :num_point_features]).float().cuda(key_origin.device)
pad_batch_indexs = np.zeros((len(voxels),1))
coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
batch_dict['voxel_coords'] = torch.from_numpy(coordinates).float().cuda(key_origin.device)
batch_dict['voxel_num_points'] = torch.from_numpy(num_points).float().cuda(key_origin.device)
batch_dict[key].requires_grad = True
# import pdb;pdb.set_trace()
# re-voxelize
# points_flatten = batch_dict[key].view(-1, num_point_features)
# points_sum = points_flatten.sum(1)
# points_valid = points_flatten[points_sum!=0].cpu().numpy()
# voxels, coordinates, num_points = voxel_generator.generate(points_valid)
# batch_dict['voxels'] = torch.from_numpy(voxels).cuda(key_origin.device)
# pad_batch_indexs = np.zeros((len(voxels),1))
# coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
# batch_dict['voxel_coords'] = torch.from_numpy(coordinates).cuda(key_origin.device)
# batch_dict['voxel_num_points'] = torch.from_numpy(num_points).cuda(key_origin.device)
for k in ['batch_index', 'point_cls_scores', 'batch_cls_preds', 'batch_box_preds', 'cls_preds_normalized', 'rois', 'roi_scores', 'roi_labels', 'has_class_labels']:
batch_dict.pop(k, None) # adhoc
for k in ['voxel_features', 'encoded_spconv_tensor', 'encoded_spconv_tensor_stride', 'multi_scale_3d_features', 'multi_scale_3d_strides', 'spatial_features', 'spatial_features_stride', 'spatial_features_2d']:
batch_dict.pop(k, None)
# batch_dict['voxels'] = key_origin + torch.clamp(batch_dict['voxels'] + clip_eta(grad, iter_eps, norm) - key_origin, -eps, eps)
# print("### newest perturbation is ", new_perturbation, i)
# If clipping is needed, reset all values outside of [clip_min, clip_max]
if (clip_min is not None) or (clip_max is not None):
if clip_min is None or clip_max is None:
raise ValueError(
"One of clip_min and clip_max is None but we don't currently support one-sided clipping"
)
# batch_dict['points'][:, 1:5] = torch.clamp(batch_dict['points'][:, 1:5], clip_min, clip_max)
############## defense ##############
if args.defense:
if key=='voxels':
# import pdb;pdb.set_trace()
# ## random sample
# voxels_flatten = batch_dict[key].view(-1, 4)
# voxels_flatten_sum = torch.sum(voxels_flatten, axis=1)
# voxels_flatten_nonzero_num = (voxels_flatten_sum!=0).sum()
# indices = torch.randint(voxels_flatten_nonzero_num, (int(0.1*voxels_flatten_nonzero_num),)) # random, should remove valid, please note
# voxels_flatten[indices] = 0
# batch_dict[key] = voxels_flatten.view(batch_dict[key].shape)
### add Gaussian Noises
# noise = (0.05**0.5)*torch.randn(batch_dict[key].shape, device=batch_dict[key].device)
# noise[batch_dict[key]==0] = 0
# batch_dict[key] = batch_dict[key] + noise
### Quantification
# batch_dict[key] = torch.round(batch_dict[key])
### flip, old and wrong
# batch_dict[key][:, :, 1] = -batch_dict[key][:, :, 1]
# batch_dict['voxel_coords'][:, 2] = 1599 - batch_dict['voxel_coords'][:, 2]
# 1) get points
assert args.batch_size==1
voxels_flatten = batch_dict[key].view(-1, 4)
points = voxels_flatten[voxels_flatten.sum(1)!=0]
# 2) voxelization
voxel_generator_defense = data_processor.VoxelGeneratorWrapper(
vsize_xyz=voxel_size,
coors_range_xyz=point_cloud_range,
num_point_features=num_point_features,
max_num_points_per_voxel=max_num_points_per_voxel,
max_num_voxels=max_num_voxels,
)
points = points.cpu().detach().numpy()
if args.d_type == 'quantify':
# quantification
points[:, :3] = np.round(points[:, :3]*100) / 100.0
elif args.d_type == 'flip':
### flip points
points[:, 1] *= -1
elif args.d_type == 'scale':
## scale points
noise_scale = 1.025 # 0.95 1 1.05
points[:, :3] *= noise_scale
elif args.d_type == 'rotate':
## rotate points
noise_rotation = np.pi/8
points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0]
elif args.d_type == 'gaussian':
# noise = np.random.randn(*points[:, :3].shape) * (0.05**0.5)
noise = np.random.normal(0, 0.01, points[:, :3].shape)
points[:, :3] += noise
elif args.d_type == 'sample':
ind = np.arange(len(points))
num = int(len(points) * 0.95)
sub_ind = np.random.choice(ind, num, replace=False)
points = points[sub_ind]
elif args.d_type == 'knn':
# import pdb;pdb.set_trace()
p_coords = points[:, :3]
estimator = KMeans(n_clusters=20)
estimator.fit(p_coords)
label_pred = estimator.labels_
centroids = estimator.cluster_centers_
distance = np.sum(np.abs(p_coords - centroids[label_pred]) ** 2, axis=1)
some = np.stack([label_pred, distance], 1)
frame = pd.DataFrame(some, columns = ['label', 'distance'])
# distance_mean = np.array(frame.groupby('label')['distance'].mean())
distance_std = np.array(frame.groupby('label')['distance'].std())
mask = distance < distance_std[label_pred]*3
points = points[mask]
else:
raise NotImplementedError()
try:
voxels, coordinates, num_points = voxel_generator_defense.generate(points)
except:
import pdb;pdb.set_trace()
coordinates = np.pad(coordinates, ((0, 0), (1, 0)), mode='constant', constant_values=0)
voxels = torch.from_numpy(voxels).float().cuda(key_origin.device)
coordinates = torch.from_numpy(coordinates).float().cuda(key_origin.device)
num_points = torch.from_numpy(num_points).float().cuda(key_origin.device)
batch_dict['voxels'] = voxels
batch_dict['voxel_coords'] = coordinates
batch_dict['voxel_num_points'] = num_points
else:
batch_dict['points'].requires_grad = False
if args.d_type == 'quantify':
batch_dict['points'][:, 1:4] = torch.round(batch_dict['points'][:, 1:4]*100) / 100.0
elif args.d_type == 'flip':
# flip
batch_dict['points'][:, 2] = - batch_dict['points'][:, 2]
elif args.d_type == 'scale':
# scale
noise_scale=1.025 # 0.95 1 1.05
batch_dict['points'][:, 1:4] *= noise_scale
elif args.d_type == 'rotate':
# rotate
noise_rotation = torch.from_numpy(np.array([np.pi/8])).float().cuda(batch_dict[key].device)
batch_dict['points'][:, 1:4] = common_utils.rotate_points_along_z(batch_dict['points'][:, 1:4].view(1,-1,3), noise_rotation)[0]
elif args.d_type == 'gaussian':
noise = torch.empty(batch_dict['points'][:, 1:4].shape, device=batch_dict[key].device).normal_(mean=0,std=0.01)
# noise = (0.05**0.5)*torch.randn(batch_dict['points'][:, 1:4].shape, device=batch_dict[key].device)
# noise = np.random.randn(*points[:, :3].shape) * (0.05**0.5)
batch_dict['points'][:, 1:4] = batch_dict['points'][:, 1:4] + noise
elif args.d_type == 'sample':
# ind = np.arange(len(points))
# num = int(len(points) * 0.95)
# sub_ind = np.random.choice(ind, num, replace=False)
# points = points[sub_ind]
# import pdb;pdb.set_trace()
points_num = batch_dict['points'].size(0)
perm = torch.randperm(points_num)
idx = perm[:int(points_num * 0.95)]
batch_dict['points'] = batch_dict['points'][idx]
elif args.d_type == 'knn':
p_coords = batch_dict['points'][:, 1:4].cpu().numpy()
estimator = KMeans(n_clusters=20)
estimator.fit(p_coords)
label_pred = estimator.labels_
centroids = estimator.cluster_centers_
distance = np.sum(np.abs(p_coords - centroids[label_pred]) ** 2, axis=1)
some = np.stack([label_pred, distance], 1)
frame = pd.DataFrame(some, columns = ['label', 'distance'])
distance_std = np.array(frame.groupby('label')['distance'].std())
mask = distance < distance_std[label_pred]*3
batch_dict['points'] = batch_dict['points'][mask]
else:
raise NotImplementedError()
if 'pv_rcnn' in args.cfg_file:
voxels, coordinates, num_points = voxel_generator.generate(batch_dict[key][:, 1:].cpu().numpy())
batch_dict['voxels'] = torch.from_numpy(voxels[:, :, :num_point_features]).float().cuda(key_origin.device)
pad_batch_indexs = np.zeros((len(voxels),1))
coordinates = np.concatenate([pad_batch_indexs, coordinates], axis=1)
batch_dict['voxel_coords'] = torch.from_numpy(coordinates).float().cuda(key_origin.device)
batch_dict['voxel_num_points'] = torch.from_numpy(num_points).float().cuda(key_origin.device)
if args.save_points:
attack_type = os.path.basename(__file__).split('.')[0]
frame_id = batch_dict['frame_id'][0]
model_name = os.path.basename(args.cfg_file).split('.')[0]
output_dir = f'../output/kitti_models/{model_name}/{attack_type}_{args.attack}_{eps}/'
os.makedirs(output_dir, exist_ok=True)
output_path = f'../output/kitti_models/{model_name}/{attack_type}_{args.attack}_{eps}/{frame_id}.bin'
if args.key == 'voxels':
save_points = points_valid[:, :4]
else:
save_points = batch_dict[key][:, 1:].detach().cpu().numpy()
with open(output_path, 'w') as f:
save_points.tofile(f)
# how to load: obj_points = np.fromfile(str(output_path), dtype=np.float32).reshape(-1 ,4)
model.eval()
with torch.no_grad():
pred_dicts, ret_dict = model(batch_dict)
disp_dict = {}
statistics_info(cfg, ret_dict, metric, disp_dict)
annos = dataset.generate_prediction_dicts(
batch_dict, pred_dicts, class_names,
output_path=final_output_dir if save_to_file else None,
flip=(args.d_type=='flip'), rotate=(args.d_type=='rotate'), scale=(args.d_type=='scale')
)
det_annos += annos
if cfg.LOCAL_RANK == 0:
progress_bar.set_postfix(disp_dict)
progress_bar.update()
if cfg.LOCAL_RANK == 0:
progress_bar.close()
if dist_test:
rank, world_size = common_utils.get_dist_info()
det_annos = common_utils.merge_results_dist(det_annos, len(dataset), tmpdir=result_dir / 'tmpdir')
metric = common_utils.merge_results_dist([metric], world_size, tmpdir=result_dir / 'tmpdir')
logger.info('*************** Performance of EPOCH %s *****************' % epoch_id)
sec_per_example = (time.time() - start_time) / len(dataloader.dataset)
logger.info('Generate label finished(sec_per_example: %.4f second).' % sec_per_example)
if cfg.LOCAL_RANK != 0:
return {}
ret_dict = {}
if dist_test:
for key, val in metric[0].items():
for k in range(1, world_size):
metric[0][key] += metric[k][key]
metric = metric[0]
gt_num_cnt = metric['gt_num']
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
cur_roi_recall = metric['recall_roi_%s' % str(cur_thresh)] / max(gt_num_cnt, 1)
cur_rcnn_recall = metric['recall_rcnn_%s' % str(cur_thresh)] / max(gt_num_cnt, 1)
logger.info('recall_roi_%s: %f' % (cur_thresh, cur_roi_recall))
logger.info('recall_rcnn_%s: %f' % (cur_thresh, cur_rcnn_recall))
ret_dict['recall/roi_%s' % str(cur_thresh)] = cur_roi_recall
ret_dict['recall/rcnn_%s' % str(cur_thresh)] = cur_rcnn_recall
total_pred_objects = 0
for anno in det_annos:
total_pred_objects += anno['name'].__len__()
logger.info('Average predicted number of objects(%d samples): %.3f'
% (len(det_annos), total_pred_objects / max(1, len(det_annos))))
# with open(result_dir / 'result.pkl', 'wb') as f:
# pickle.dump(det_annos, f)
result_str, result_dict = dataset.evaluation(
det_annos, class_names,
eval_metric=cfg.MODEL.POST_PROCESSING.EVAL_METRIC,
output_path=final_output_dir
)
logger.info(result_str)
ret_dict.update(result_dict)
logger.info('Result is save to %s' % result_dir)
logger.info('****************Evaluation done.*****************')
return ret_dict
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')
parser.add_argument('--batch_size', type=int, default=1, required=False, help='batch size for training')
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
help='set extra config keys if needed')
parser.add_argument('--max_waiting_mins', type=int, default=30, help='max waiting minutes')
parser.add_argument('--start_epoch', type=int, default=0, help='')
parser.add_argument('--eval_tag', type=str, default='default', help='eval tag for this experiment')
parser.add_argument('--ckpt_dir', type=str, default=None, help='specify a ckpt directory to be evaluated if needed')
parser.add_argument('--save_to_file', action='store_true', default=False, help='')
parser.add_argument('--eps', type=float, default=0.03, help='max_shift default 0.03m')
parser.add_argument('--attack', type=str, default='PGD', help='FGSM/PGD/MI')
parser.add_argument('--key', type=str, default='voxels', help='voxels/points')
# parser.add_argument('--eval_all', action='store_true', default=False, help='whether to evaluate all checkpoints')
parser.add_argument('--defense', action='store_true', default=False, help='')
parser.add_argument('--d_type', default='', type=str, help='flip/rotate/scale/gaussian/quantify/sample')
parser.add_argument('--save_points', action='store_true', default=False, help='')
args = parser.parse_args()
cfg_from_yaml_file(args.cfg_file, cfg)
cfg.TAG = Path(args.cfg_file).stem
cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml'
np.random.seed(1024)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs, cfg)
return args, cfg
def main():
args, cfg = parse_config()
if args.launcher == 'none':
dist_test = False
total_gpus = 1
else:
total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(
args.tcp_port, args.local_rank, backend='nccl'
)
dist_test = True
if args.batch_size is None:
args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU
else:
assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus'
args.batch_size = args.batch_size // total_gpus
output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag
output_dir.mkdir(parents=True, exist_ok=True)
eval_output_dir = output_dir / 'eval'
# if not args.eval_all:
num_list = re.findall(r'\d+', args.ckpt) if args.ckpt is not None else []
epoch_id = num_list[-1] if num_list.__len__() > 0 else 'no_number'
eval_output_dir = eval_output_dir / ('epoch_%s' % epoch_id) / cfg.DATA_CONFIG.DATA_SPLIT['test']
# else:
# eval_output_dir = eval_output_dir / 'eval_all_default'
if args.eval_tag is not None:
eval_output_dir = eval_output_dir / args.eval_tag
eval_output_dir.mkdir(parents=True, exist_ok=True)
log_file = eval_output_dir / ('log_eval_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK)
# log to file
logger.info('**********************Start logging**********************')
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list)
if dist_test:
logger.info('total_batch_size: %d' % (total_gpus * args.batch_size))
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
log_config_to_file(cfg, logger=logger)
ckpt_dir = args.ckpt_dir if args.ckpt_dir is not None else output_dir / 'ckpt'
test_set, test_loader, sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=dist_test, workers=args.workers, logger=logger, training=False
)
model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=test_set)
# load checkpoint
model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=dist_test)
model.cuda()
# start evaluation
## rewrite the process of evaluation
eval_one_epoch(
cfg, model, test_loader, epoch_id, logger, args, dist_test=dist_test,
result_dir=eval_output_dir, save_to_file=args.save_to_file
)
if __name__ == '__main__':
main()