-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_chatbot_jointdata.py
827 lines (730 loc) · 46.4 KB
/
train_chatbot_jointdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
from copy import deepcopy
from operator import countOf
from statistics import mean
from typing import Any, Dict, List
import wandb
from functools import reduce
import redisai as rai
from multiprocessing import Process
import json
import os
from chatbot.adviser.app.answerTemplateParser import AnswerTemplateParser
from chatbot.adviser.app.encoding.similiarity import AnswerSimilarityEncoding
from chatbot.adviser.app.encoding.text import TextEmbeddingPooling
from chatbot.adviser.app.rl.dialogenv import EnvironmentMode, ParallelDialogEnvironment
from chatbot.adviser.app.rl.dialogtree import DialogTree
import chatbot.adviser.app.rl.dataset as Data
from chatbot.adviser.app.rl.layers.attention.attention_factory import AttentionActivationConfig, AttentionMechanismConfig, AttentionVectorAggregation
from chatbot.adviser.app.rl.spaceAdapter import AnswerSimilarityEmbeddingConfig, IntentEmbeddingConfig, SpaceAdapter, ActionConfig, SpaceAdapterAttentionInput, SpaceAdapterAttentionQueryInput, SpaceAdapterConfiguration, SpaceAdapterSpaceInput, TextEmbeddingConfig
from chatbot.adviser.app.rl.utils import EMBEDDINGS, AutoSkipMode, AverageMetric, EnvInfo, ExperimentLogging, _del_checkpoint, _get_file_hash, _munchausen_stable_logsoftmax, _munchausen_stable_softmax, _save_checkpoint, safe_division
import time
import random
import numpy as np
import torch
import numpy as np
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_sequence
EXPERIMENT_LOGGING = ExperimentLogging.ONLINE
class Trainer:
def setUp(self) -> None:
self.device = "cuda:0" if len(os.environ["CUDA_VISIBLE_DEVICES"].strip()) > 0 else "cpu"
# REMOVE AUTOSKIP ARG FROM SIMULATION
# ADD stop_action ARG TO CONFIGURATION
# ADD noise ARG TO STATE TEXT INPUTS
# REMOVE AUTOSKIP ARG FROM SIMULATION
# ADD stop_action ARG TO CONFIGURATION
# ADD noise ARG TO STATE TEXT INPUTS
seed = 12345678
self.exp_name_prefix = "V8_JOINTDATA_ROBERTA_10NOISE_25DROPOUT_ACTIONPOS"
self.args = {
"spaceadapter": {
"configuration": SpaceAdapterConfiguration(
text_embedding="cross-en-de-roberta-sentence-transformer", #'distiluse-base-multilingual-cased-v2', # 'gbert-large' # 'cross-en-de-roberta-sentence-transformer',
action_config=ActionConfig.ACTIONS_IN_STATE_SPACE,
action_masking=True,
stop_action=False,
auto_skip=AutoSkipMode.NONE,
use_answer_synonyms=True
),
"state": SpaceAdapterSpaceInput(
last_system_action=True,
beliefstate=True,
current_node_position=True,
current_node_type=True,
user_intent_prediction=IntentEmbeddingConfig(
active=False,
ckpt_dir='./.models/intentpredictor'
),
answer_similarity_embedding=AnswerSimilarityEmbeddingConfig(
active=False,
model_name='distiluse-base-multilingual-cased-v2',
caching=True,
),
dialog_node_text=TextEmbeddingConfig(
active=True,
pooling=TextEmbeddingPooling.MEAN,
caching=True,
),
original_user_utterance=TextEmbeddingConfig(
active=True,
pooling=TextEmbeddingPooling.MEAN,
caching=True,
),
current_user_utterance=TextEmbeddingConfig(
active=True,
pooling=TextEmbeddingPooling.MEAN,
caching=True,
),
dialog_history=TextEmbeddingConfig(
active=True,
pooling=TextEmbeddingPooling.MEAN,
caching=False,
),
action_text=TextEmbeddingConfig(
active=True,
pooling=TextEmbeddingPooling.MEAN,
caching=True,
),
action_position=True
),
"attention": [
SpaceAdapterAttentionInput(
active=False,
name="utterance_nodetext_attn",
queries=SpaceAdapterAttentionQueryInput(
input=['current_user_utterance',
'original_user_utterance'],
pooling=TextEmbeddingPooling.CLS,
aggregation=AttentionVectorAggregation.SUM,
caching=True,
allow_noise=True
),
matrix="dialog_node_text",
activation=AttentionActivationConfig.NONE,
attention_mechanism=AttentionMechanismConfig.ADDITIVE,
caching=False,
allow_noise=False
),
SpaceAdapterAttentionInput(
active=False,
name="utterance_history_attn",
queries=SpaceAdapterAttentionQueryInput(
input=['current_user_utterance',
'original_user_utterance'],
pooling=TextEmbeddingPooling.CLS,
aggregation=AttentionVectorAggregation.MAX,
caching=True,
allow_noise=True
),
matrix="dialog_history",
activation=AttentionActivationConfig.NONE,
attention_mechanism=AttentionMechanismConfig.ADDITIVE,
caching=False,
allow_noise=False
)
]
},
"simulation": {
"normalize_rewards": True,
"max_steps": 50,
"user_patience": 3,
"stop_when_reaching_goal": True,
"dialog_faq_ratio": 0.5,
"parallel_train_envs": 128,
"parallel_test_envs": 128,
"train_noise": 0.1,
"eval_noise": 0.1,
"test_noise": 0.1
},
"experiment": {
"seed": seed,
"cudnn_deterministic": False,
"keep": 5
},
"model": {
"architecture": "new_dueling", # 'dueling', 'vanilla', "new_dueling"
"shared_layer_sizes": [8096, 4096, 4096],
"value_layer_sizes": [2048, 1024],
"advantage_layer_sizes": [4096, 2048, 1024],
"hidden_layer_sizes": [4096, 2048, 1024],
"dropout": 0.25,
"activation_fn": "SELU",
"normalization_layers": False,
"intentprediction": True # True # False
},
"optimizer": {
"name": "Adam",
"lr": 0.0001
},
"algorithm": {
"timesteps_per_reset": 1500000,
"reset_exploration_times": 0,
"max_grad_norm": 1.0,
"batch_size": 128,
"gamma": 0.99,
"algorithm": "dqn", # "ppo", "dqn"
},
"ppo": {
"T": 4, # timesteps per actor (<< episode length) included in one minibatch => parallel actors = batch_size // T2,
'update_epochs': 10,
'minibatch_size': 64
},
"dqn": {
"buffer_size": 100000,
"buffer_type": "HER", # "prioritized", "LAP", # "uniform", # "HER"
"priority_replay_alpha": 0.6,
"priority_replay_beta": 0.4,
"exploration_fraction": 0.99,
"eps_start": 0.6,
"eps_end": 0.0,
"train_frequency": 3,
"learning_starts": 1280,
"target_network_frequency": 15,
"q_value_clipping": 10.0,
"munchausen_targets": True,
"munchausen_tau": 0.03,
"munchausen_alpha": 0.9,
"munchausen_clipping": -1
},
"evaluation": {
"evaluation": True,
"every_train_timesteps": 10000,
"dialogs": 500
}
}
# set random seed
random.seed(self.args["experiment"]["seed"])
np.random.seed(self.args["experiment"]["seed"])
torch.manual_seed(self.args["experiment"]["seed"])
torch.backends.cudnn.deterministic = self.args["experiment"]["cudnn_deterministic"]
# load dialog tree
self.tree = DialogTree(version=0)
self.eval_tree = DialogTree(version=1)
# load text embedding
text_embedding_name = self.args['spaceadapter']['configuration'].text_embedding
self.cache_conn = rai.Client(host='localhost', port=64123, db=EMBEDDINGS[text_embedding_name]['args'].pop('cache_db_index'))
self.text_enc = EMBEDDINGS[text_embedding_name]['class'](device=self.device, **EMBEDDINGS[text_embedding_name]['args'])
# post-init spaceadapter
self.spaceadapter_config: SpaceAdapterConfiguration = self.args['spaceadapter']['configuration']
self.spaceadapter_state: SpaceAdapterSpaceInput = self.args['spaceadapter']['state']
self.spaceadapter_attention: List[SpaceAdapterAttentionInput] = self.args['spaceadapter']['attention']
self.spaceadapter_config.post_init(tree=self.tree)
self.spaceadapter_state.post_init(device=self.device, tree=self.tree, text_embedding=self.text_enc, action_config=self.spaceadapter_config.action_config, action_masking=self.spaceadapter_config.action_masking, stop_action=self.spaceadapter_config.stop_action, cache_connection=self.cache_conn)
for attn in self.spaceadapter_attention:
attn.post_init(device=self.device, tree=self.tree, text_embedding=self.text_enc, action_config=self.spaceadapter_config.action_config, action_masking=self.spaceadapter_config.action_masking, cache_connection=self.cache_conn)
# prepare directories
spaceadapter_json = self.spaceadapter_config.toJson() | self.spaceadapter_state.toJson() | {"attention": [attn.toJson() for attn in self.spaceadapter_attention]}
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
self.exp_name = f"{self.exp_name_prefix}_{self.args['algorithm']['algorithm']}_{str(int(100 * self.args['simulation']['dialog_faq_ratio']))}dialog_{self.spaceadapter_config.action_config.value}_{self.spaceadapter_config.text_embedding}"
for key in spaceadapter_json['state']:
if isinstance(spaceadapter_json['state'][key], bool):
if not spaceadapter_json['state'][key]:
self.exp_name += f"_no{key}"
else:
if not spaceadapter_json['state'][key]['active']:
self.exp_name += f"_no{key}"
self.run_name = f"{self.exp_name}__{seed}__{int(time.time())}"
os.makedirs(f"/mount/arbeitsdaten/asr-2/vaethdk/adviser_reisekosten/newruns/{self.run_name}")
os.makedirs(f"/fs/scratch/users/vaethdk/adviser_reisekosten/newruns/{self.run_name}")
self.args['simulation']["log_to_file"] = f"/fs/scratch/users/vaethdk/adviser_reisekosten/newruns/{self.run_name}/dialogs.txt"
else:
self.args['simulation']["log_to_file"] = None
# init spaceadapter
self.adapter = SpaceAdapter(device=self.device, dialog_tree=self.tree, **self.args["spaceadapter"])
self.algorithm = self.args['algorithm']['algorithm']
if self.algorithm == 'dqn':
self.n_train_envs = self.args['simulation'].pop('parallel_train_envs')
self.n_test_envs = self.args['simulation'].pop('parallel_test_envs')
# assert self.args['algorithm']['batch_size'] > self.args['dqn']['train_frequency'], "Training batch size should be larger than the train frequency to avoid bias to most recent transitions only"
else:
assert False, f"Unknown algorithm: {self.algorithm}"
# init auto-skip model
similarity_model = None
if self.spaceadapter_config.auto_skip != AutoSkipMode.NONE:
if not isinstance(self.adapter.stateinput.answer_similarity_embedding, type(None)):
similarity_model = self.adapter.stateinput.encoders['action_answer_similarity_embedding']
else:
similarity_model = AnswerSimilarityEncoding(model_name="distiluse-base-multilingual-cased-v2", dialog_tree=self.tree, device=self.device, caching=True)
dialog_faq_ratio = self.args['simulation'].pop('dialog_faq_ratio')
self.train_env = ParallelDialogEnvironment(dialog_tree=self.tree, adapter=self.adapter, stop_action=self.adapter.configuration.stop_action, use_answer_synonyms=self.adapter.configuration.use_answer_synonyms, mode=EnvironmentMode.TRAIN, n_envs=self.n_train_envs, auto_skip=self.spaceadapter_config.auto_skip, dialog_faq_ratio=dialog_faq_ratio, similarity_model=similarity_model, use_joint_dataset=True, **self.args['simulation'])
self.eval_env = ParallelDialogEnvironment(dialog_tree=self.tree, adapter=self.adapter, stop_action=self.adapter.configuration.stop_action, use_answer_synonyms=self.adapter.configuration.use_answer_synonyms, mode=EnvironmentMode.EVAL, n_envs=self.n_test_envs, auto_skip=self.spaceadapter_config.auto_skip, dialog_faq_ratio=0.5, similarity_model=similarity_model, use_joint_dataset=True, **self.args['simulation'])
if EXPERIMENT_LOGGING == ExperimentLogging.OFFLINE:
# TODO set wandb api key in env variable: "WANDB_API_KEY"
os.environ["WANDB_MODE"] = "offline"
args = {key: self.args[key] for key in self.args if key != 'spaceadapter'}
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
# write code
wandb.init(project="adviser-reisekosten", config=(spaceadapter_json | args), save_code=True, name=self.exp_name, settings=wandb.Settings(code_dir="/fs/scratch/users/vaethdk/adviser_reisekosten/chatbot/management/commands"))
wandb.config.update({'datasetversion': _get_file_hash('train_graph.json')}) # log dataset version hash
#
# network setup
#
if self.algorithm == 'dqn':
self.model = self._dqn_model_from_args(self.args).to(self.device)
self.target_network = self._dqn_model_from_args(self.args).to(self.device)
self.target_network.load_state_dict(self.model.state_dict())
# self.experiment.set_model_graph(str(self.model))
self.optimizer = self._optimizer_from_args(self.args, self.model)
self.adapter.set_model(self.model)
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
wandb.watch(self.model, log_freq=100)
#
# buffer setup
#
if self.algorithm == "dqn":
if not "buffer_type" in self.args['dqn'] or self.args['dqn']['buffer_type'] == 'uniform':
from chatbot.adviser.app.rl.dqn.replay_uniform import UniformReplayBuffer
self.rb = UniformReplayBuffer(self.args['dqn']['buffer_size'], self.adapter, device=self.device)
elif self.args['dqn']['buffer_type'] == 'prioritized':
from chatbot.adviser.app.rl.dqn.replay_prioritized import PrioritizedReplayBuffer
self.rb = PrioritizedReplayBuffer(
buffer_size=self.args['dqn']['buffer_size'], adapter=self.adapter, device=self.device,
alpha=self.args['dqn']['priority_replay_alpha'], beta=self.args['dqn']['priority_replay_beta']
)
elif self.args['dqn']['buffer_type'] == 'LAP':
from chatbot.adviser.app.rl.dqn.replay_prioritized import PrioritizedLAPReplayBuffer
self.rb = PrioritizedLAPReplayBuffer( buffer_size=self.args['dqn']['buffer_size'], adapter=self.adapter, device=self.device,
alpha=self.args['dqn']['priority_replay_alpha'], beta=self.args['dqn']['priority_replay_beta']
)
elif self.args['dqn']['buffer_type'] == 'HER':
from chatbot.adviser.app.rl.dqn.replay_her import HindsightExperienceReplay
self.rb = HindsightExperienceReplay(envs=self.train_env, buffer_size=self.args['dqn']['buffer_size'], adapter=self.adapter,
train_noise=self.args['simulation']['train_noise'],
dialog_tree=self.tree, answerParser=AnswerTemplateParser(), logicParser=self.train_env.logicParser,
dialog_faq_ratio=0.0, max_reward=self.train_env.max_reward,
alpha=self.args['dqn']['priority_replay_alpha'], beta=self.args['dqn']['priority_replay_beta'],
device=self.device, experiment_logging=EXPERIMENT_LOGGING, auto_skip=self.spaceadapter_config.auto_skip,
stop_when_reaching_goal=self.args['simulation']['stop_when_reaching_goal'],
similarity_model=similarity_model)
# write experiment config file
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
with open(f"/mount/arbeitsdaten/asr-2/vaethdk/adviser_reisekosten/newruns/{self.run_name}/config.json", "w") as f:
json.dump({'spaceadapter': spaceadapter_json} | args, f)
# Setup train metrics
self.train_episodic_return = AverageMetric(name='train/episodic_return', running_avg=25)
self.train_episode_length = AverageMetric(name="train/episode_length", running_avg=25)
self.train_success = AverageMetric(name="train/success", running_avg=25)
self.train_goal_asked = AverageMetric(name='train/goal_asked', running_avg=25)
self.last_save_step = 0
self.savefile_goal_asked_score = {} # mapping from filename to goal_asked score from evaluation
def _linear_schedule(self, start_e: float, end_e: float, duration: int, t: int):
slope = (end_e - start_e) / duration
return max(slope * t + start_e, end_e)
def _beta_schedule(self, start_b: float, duration: int, t: int):
slope = (1.0 - start_b) / duration
return min(slope * t + start_b, 1.0)
def _flattened_args_dict(self, args: dict, outer_key: str = ""):
flattened = {}
for key in args:
new_outer_key = f"{outer_key}_{key}" if len(outer_key) > 0 else key
if isinstance(args[key], dict):
flattened = flattened | self._flattened_args_dict(args[key], new_outer_key)
else:
flattened[new_outer_key] = args[key]
return flattened
def _recurse_dict_to_cpu(self, state_dict: dict):
copied = {}
for key in state_dict:
if isinstance(state_dict[key], dict):
copied[key] = self._recurse_dict_to_cpu(state_dict[key])
elif isinstance(state_dict[key], torch.Tensor):
copied[key] = state_dict[key].clone().detach().cpu()
else:
copied[key] = deepcopy(state_dict[key])
return copied
def _save_checkpoint_with_timeout(self, goal_asked_score: float, global_step: int, episode_counter: int, train_counter: int, epsilon: float, timeout=None):
keep_checkpoints = self.args['experiment']['keep'] if "keep" in self.args['experiment'] else 5
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
self.last_save_step = global_step
# find worst checkpoint
worst_score_file = None
if len(self.savefile_goal_asked_score) >= keep_checkpoints:
for filename in self.savefile_goal_asked_score:
if not worst_score_file:
worst_score_file = filename
if self.savefile_goal_asked_score[filename] < self.savefile_goal_asked_score[worst_score_file]:
worst_score_file = filename
if self.savefile_goal_asked_score[worst_score_file] <= goal_asked_score:
# try deleting worst file
if timeout:
success = False
counter = 0
while not success and counter < 5:
p = Process(target=_del_checkpoint, args=(worst_score_file,))
p.start()
p.join(timeout=timeout)
counter += 1
if p.exitcode == 0:
success = True
del self.savefile_goal_asked_score[worst_score_file]
if not success:
print(f"FAILED DELETING 5 times for checkpoint {worst_score_file}")
else:
_del_checkpoint(worst_score_file)
del self.savefile_goal_asked_score[worst_score_file]
# save new checkpoint
if len(self.savefile_goal_asked_score) < keep_checkpoints:
if timeout:
success = False
counter = 0
while not success and counter < 5:
p = Process(target=_save_checkpoint, args=(global_step, episode_counter, train_counter, self.run_name,
self._recurse_dict_to_cpu(self.model.state_dict()),
self._recurse_dict_to_cpu(self.optimizer.state_dict()),
epsilon,
torch.get_rng_state().clone().detach().cpu(),
np.random.get_state(),
random.getstate()))
p.start()
p.join(timeout=timeout)
p.terminate()
counter += 1
if p.exitcode == 0:
success = True
self.savefile_goal_asked_score[f"/mount/arbeitsdaten/asr-2/vaethdk/adviser_reisekosten/newruns/{self.run_name}/ckpt_{global_step}.pt"] = goal_asked_score
if not success:
print(f"FAILED SAVING 5 times for checkpoint at step {global_step}")
else:
_save_checkpoint(global_step, episode_counter, train_counter, self.run_name,
self._recurse_dict_to_cpu(self.model.state_dict()),
self._recurse_dict_to_cpu(self.optimizer.state_dict()),
epsilon,
torch.get_rng_state().clone().detach().cpu(),
np.random.get_state(),
random.getstate())
self.savefile_goal_asked_score[f"/mount/arbeitsdaten/asr-2/vaethdk/adviser_reisekosten/newruns/{self.run_name}/ckpt_{global_step}.pt"] = goal_asked_score
def _parse_activation_fn(self, activation_fn_name: str):
if activation_fn_name == "ReLU":
return torch.nn.ReLU
elif activation_fn_name == "tanh":
return torch.nn.Tanh
elif activation_fn_name == "SELU":
return torch.nn.SELU
else:
assert False, f"unknown activation function name: {activation_fn_name}"
def _dqn_model_from_args(self, args: dict):
q_value_clipping = args['dqn']['q_value_clipping'] if 'q_value_clipping' in args['dqn'] else 0
kwargs = {
"adapter": self.adapter,
"dropout_rate": args['model']['dropout'],
"activation_fn": self._parse_activation_fn(args['model']['activation_fn']),
"normalization_layers": args['model']['normalization_layers'],
"q_value_clipping": q_value_clipping,
}
if 'dueling' in args['model']['architecture']:
kwargs |= {
"shared_layer_sizes": args['model']['shared_layer_sizes'],
"advantage_layer_sizes": args["model"]["advantage_layer_sizes"],
"value_layer_sizes": args['model']['value_layer_sizes'],
}
if args['model']['intentprediction'] == False:
from chatbot.adviser.app.rl.dqn.dqn import DuelingDQN
model = DuelingDQN(**kwargs)
else:
if args['model']['architecture'] == "dueling":
from chatbot.adviser.app.rl.dqn.dqn import DuelingDQNWithIntentPredictionHead
model = DuelingDQNWithIntentPredictionHead(**kwargs)
elif args['model']['architecture'] == "new_dueling":
from chatbot.adviser.app.rl.dqn.dqn import NewDuelingDQNWithIntentPredictionHead
model = NewDuelingDQNWithIntentPredictionHead(**kwargs)
elif args['model']['architecture'] == 'vanilla':
from chatbot.adviser.app.rl.dqn.dqn import DQN
model = DQN(hidden_layer_sizes=args["model"]["hidden_layer_sizes"], **kwargs)
assert model, f"unknown model architecture {args['model']['architecture']}"
return model
def _optimizer_from_args(self, args: dict, model: torch.nn.Module):
if args['optimizer']['name'] == "Adam":
optim = torch.optim.Adam(model.parameters(), lr=args['optimizer']['lr'])
elif args['optimizer']['name'] == "AdamW":
optim = torch.optim.AdamW(model.parameters(), lr=args['optimizer']['lr'])
assert optim, "unknown optimizer"
return optim
@torch.no_grad()
def eval(self, env: ParallelDialogEnvironment, eval_dialogs: int, eval_phase: int, prefix: str) -> float:
"""
Returns:
goal_asked score (float)
"""
self.model.eval()
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
env.logger.info(f"=========== EVAL AT STEP {eval_dialogs}, PHASE {eval_phase} ============")
eval_metrics = {
"episode_return": [],
"episode_length": [],
"success": [],
"goal_asked": [],
"success_faq": [],
"success_dialog": [],
"goal_asked_faq": [],
"goal_asked_dialog": [],
"episode_skip_length_ratio": [],
"skip_length_ratio_faq": [],
"skip_length_ratio_dialog": [],
"skipped_question_ratio": [],
"skipped_variable_ratio": [],
"skipped_info_ratio": [],
"skipped_invalid_ratio": [],
"stop_prematurely_ratio": [],
"faq_dialog_ratio": [],
"episode_stop_ratio": [],
"ask_variable_irrelevant_ratio": [],
"ask_question_irrelevant_ratio": [],
"episode_missing_variable_ratio": [],
"episode_history_wordcount": [],
"max_history_wordcount": [0],
"intentprediction_consistency": []
}
if self.args['model']['intentprediction'] == True:
intentprediction_tp = 0
intentprediction_tn = 0
intentprediction_fp = 0
intentprediction_fn = 0
batch_size = self.args['algorithm']["batch_size"]
num_dialogs = 0
obs = env.reset()
intent_history = [[] for _ in range(batch_size)]
while num_dialogs < eval_dialogs:
# state = [self.adapter.state_vector(env_obs) for env_obs in obs]
state = self.adapter.batch_state_vector_from_obs(obs, batch_size)
node_keys = env.current_nodes_keys
if self.algorithm == 'dqn':
if self.adapter.configuration.action_config == ActionConfig.ACTIONS_IN_ACTION_SPACE:
actions, intent_classes = self.model.select_actions_eps_greedy(node_keys=node_keys, state_vectors=torch.cat(state, dim=0), epsilon=0.0)
else:
actions, intent_classes = self.model.select_actions_eps_greedy(node_keys=node_keys, state_vectors=pack_sequence(state, enforce_sorted=False), epsilon=0.0)
obs, rewards, dones, infos = env.step(actions)
if torch.is_tensor(intent_classes):
for idx, intent in enumerate(intent_classes.tolist()):
intent_history[idx].append(intent)
for done_idx, done in enumerate(dones):
if done and num_dialogs < eval_dialogs:
info = infos[done_idx]
env_instance = env.envs[done_idx]
# update metrics
eval_metrics["episode_return"].append(info[EnvInfo.EPISODE_REWARD])
eval_metrics["episode_length"].append(info[EnvInfo.EPISODE_LENGTH])
eval_metrics["success"].append(float(info[EnvInfo.REACHED_GOAL_ONCE]))
eval_metrics["goal_asked"].append(float(info[EnvInfo.ASKED_GOAL]))
if env_instance.is_faq_mode:
eval_metrics["success_faq"].append(1.0 if info[EnvInfo.REACHED_GOAL_ONCE] else 0.0)
eval_metrics["goal_asked_faq"].append(1.0 if info[EnvInfo.ASKED_GOAL] else 0.0)
eval_metrics["skip_length_ratio_faq"].append(env_instance.skipped_nodes / info[EnvInfo.EPISODE_LENGTH])
else:
eval_metrics["success_dialog"].append(info[EnvInfo.REACHED_GOAL_ONCE])
eval_metrics["goal_asked_dialog"].append(info[EnvInfo.ASKED_GOAL])
eval_metrics["skip_length_ratio_dialog"].append(env_instance.skipped_nodes / info[EnvInfo.EPISODE_LENGTH])
eval_metrics["episode_skip_length_ratio"].append(env_instance.skipped_nodes / info[EnvInfo.EPISODE_LENGTH])
eval_metrics["skipped_question_ratio"].append(safe_division(env_instance.actioncount_skip_question, env_instance.nodecount_question))
eval_metrics["skipped_variable_ratio"].append(safe_division(env_instance.actioncount_skip_variable, env_instance.nodecount_variable))
eval_metrics["skipped_info_ratio"].append(safe_division(env_instance.actioncount_skip_info, env_instance.nodecount_info))
eval_metrics["skipped_invalid_ratio"].append(safe_division(env_instance.actioncount_skip_invalid, env_instance.actioncount_skip))
eval_metrics["stop_prematurely_ratio"].append(env_instance.actioncount_stop_prematurely)
eval_metrics["faq_dialog_ratio"].append(1.0 if env_instance.is_faq_mode else 0.0)
eval_metrics["episode_stop_ratio"].append(env_instance.actioncount_stop)
eval_metrics["ask_variable_irrelevant_ratio"].append(safe_division(env_instance.actioncount_ask_variable_irrelevant, env_instance.actioncount_ask_variable))
eval_metrics["ask_question_irrelevant_ratio"].append(safe_division(env_instance.actioncount_ask_question_irrelevant, env_instance.actioncount_ask_question))
eval_metrics["episode_missing_variable_ratio"].append(env_instance.actioncount_missingvariable)
hist_word_count = env_instance.get_history_word_count()
eval_metrics["episode_history_wordcount"].append(hist_word_count)
if hist_word_count > eval_metrics['max_history_wordcount'][0]:
eval_metrics['max_history_wordcount'] = [hist_word_count]
num_dialogs += 1
if torch.is_tensor(intent_classes):
intent_class_a_count = intent_history[done_idx].count(0)
intent_class_b_count = intent_history[done_idx].count(1)
# intent inconsistency: ratio number of intent classes in 1 dialog (1.0 if different each turn, 0.0 if same each turn)
# -> consistency: 1 - inconsistency
intent_inconsistency = intent_class_a_count / intent_class_b_count if intent_class_a_count < intent_class_b_count else intent_class_b_count / intent_class_a_count
eval_metrics["intentprediction_consistency"].append(1.0 - intent_inconsistency)
# calculate majority class (if more class 1 -> True, if more class 0 -> False)
majority_class = int(intent_class_b_count > intent_class_a_count)
if info[EnvInfo.IS_FAQ] == False and majority_class == 0:
intentprediction_tn += 1
elif info[EnvInfo.IS_FAQ] == False and majority_class == 1:
intentprediction_fp += 1
elif info[EnvInfo.IS_FAQ] == True and majority_class == 1:
intentprediction_tp += 1
elif info[EnvInfo.IS_FAQ] == True and majority_class == 0:
intentprediction_fn += 1
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
env_instance.logger.info("\n".join(env_instance.episode_log))
intent_history[done_idx] = [] # reset intent history
obs[done_idx] = env_instance.reset()
# log metrics (averaged)
log_dict = {}
if self.args['model']['intentprediction'] == True:
eval_metrics["intentprediction_f1"] = [safe_division(intentprediction_tp, intentprediction_tp + 0.5 * (intentprediction_fp + intentprediction_fn))]
eval_metrics["intentprediction_recall"] = [safe_division(intentprediction_tp, intentprediction_tp + intentprediction_fn)]
eval_metrics["intentprediction_precision"] = [safe_division(intentprediction_tp, intentprediction_tp + intentprediction_fp)]
eval_metrics["intentprediction_accuracy"] = [safe_division(intentprediction_tp + intentprediction_tn, num_dialogs)]
for metric in eval_metrics:
numerical_entries = [num for num in eval_metrics[metric] if num is not None]
if len(numerical_entries) == 0:
numerical_entries = [0.0]
log_dict[f"{prefix}/{metric}"] = mean(numerical_entries)
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
wandb.log(log_dict, step=eval_phase)
self.model.train()
return mean(eval_metrics["goal_asked"])
def log_train_step(self, global_step: int, train_step: int, epsilon: float, timesteps_per_reset: int, beta: float):
if train_step % 50 == 0 and EXPERIMENT_LOGGING != ExperimentLogging.NONE:
log_dict = {"train/learning_phase": global_step // timesteps_per_reset}
if self.algorithm == "dqn":
log_dict["train/epsilon"] = epsilon
if 'buffer_type' in self.args['dqn'] and self.args['dqn']['buffer_type'] == 'prioritized':
log_dict["train/priority_beta"] = beta
log_dict["train/buffer_size"] = len(self.rb)
if self.train_env.current_episode > 0:
log_dict["train/faq_dialog_ratio"] = self.train_env.num_faqbased_dialogs / self.train_env.current_episode
log_dict["train/actioncount_stop_prematurely"] = self.train_env.actioncount_stop_prematurely
wandb.log(log_dict, step=global_step, commit=(global_step % 250) == 0)
def store_dqn(self, observations: List[torch.FloatTensor], next_observations: List[torch.FloatTensor], actions: List[int], rewards: List[float], dones: List[bool], infos: List[dict], global_step: int):
for env_id, (obs, next_obs, action, reward, done, info) in enumerate(zip(observations, next_observations, actions, rewards, dones, infos)):
self.rb.add(env_id, obs, next_obs, action, reward, done, info, global_step)
@torch.no_grad()
def _munchausen_target(self, next_observations, data, q_prev: torch.FloatTensor):
tau = self.args['dqn']['munchausen_tau']
q_next = self.target_network(next_observations)[0] # batch x actions
mask = q_next > float('-inf')
sum_term = _munchausen_stable_softmax(q_next, tau) * (q_next - _munchausen_stable_logsoftmax(q_next, tau)) # batch x actions
log_policy = _munchausen_stable_logsoftmax(q_prev, tau).gather(-1, data.actions).view(-1) # batch x actions -> batch
if self.args['dqn']['munchausen_clipping'] != 0:
log_policy = torch.clip(log_policy, min=self.args['dqn']['munchausen_clipping'], max=1)
return data.rewards.flatten() + self.args['dqn']['munchausen_alpha']*log_policy + self.args['algorithm']["gamma"] * sum_term.masked_fill(~mask, 0.0).sum(-1) * (1.0 - data.dones.flatten()*torch.tensor(data.infos[EnvInfo.IS_FAQ], dtype=torch.float, device=self.device))
@torch.no_grad()
def _td_target(self, next_observations, data):
target_pred, _ = self.target_network(next_observations)
target_max, _ = target_pred.max(dim=1) # output[1] would be predicted intent classes
return data.rewards.flatten() + self.args['algorithm']["gamma"] * target_max * (1 - data.dones.flatten()*torch.tensor(data.infos[EnvInfo.IS_FAQ], dtype=torch.float, device=self.device))
def train_step_dqn(self, global_step: int, train_counter: int):
data = self.rb.sample(self.args['algorithm']["batch_size"])
# observations = [self.adapter.state_vector({ key: data.observations[key][index] for key in data.observations}) for index in range(self.args['algorithm']["batch_size"])]
# next_observations = [self.adapter.state_vector({ key: data.next_observations[key][index] for key in data.next_observations}) for index in range(self.args['algorithm']["batch_size"])]
observations = self.adapter.batch_state_vector(data.observations, self.args['algorithm']["batch_size"])
next_observations = self.adapter.batch_state_vector(data.next_observations, self.args['algorithm']["batch_size"])
if self.adapter.configuration.action_config == ActionConfig.ACTIONS_IN_ACTION_SPACE:
observations = torch.cat(observations, dim=0)
next_observations = torch.cat(next_observations, dim=0)
else:
observations = pack_sequence(observations, enforce_sorted=False)
next_observations = pack_sequence(next_observations, enforce_sorted=False)
old_val, intent_logits = self.model(observations)
if 'munchausen_targets' in self.args['dqn'] and self.args['dqn']['munchausen_targets'] == True:
td_target = self._munchausen_target(next_observations, data, old_val)
else:
td_target = self._td_target(next_observations, data)
old_val = old_val.gather(1, data.actions).squeeze()
# loss
loss = F.huber_loss(td_target, old_val, reduction="none")
intent_loss = 0 if not torch.is_tensor(intent_logits) else F.binary_cross_entropy_with_logits(intent_logits.view(-1), torch.tensor(data.infos[EnvInfo.IS_FAQ], dtype=torch.float, device=self.device), reduction="none")
if 'buffer_type' in self.args['dqn'] and self.args['dqn']['buffer_type'] == 'prioritized':
loss = loss * data.weights
if not isinstance(intent_logits, type(None)):
intent_loss = intent_loss * data.weights
# update priorities
with torch.no_grad():
td_error = torch.abs(td_target - old_val)
self.rb.update_weights(data.indices, td_error)
# scale gradients by priority weights
loss = loss.mean(-1) # reduce loss
if not isinstance(intent_logits, type(None)):
intent_loss = intent_loss.mean(-1) # reduce loss
if EXPERIMENT_LOGGING != ExperimentLogging.NONE:
log_dict = {"train/loss": loss.item(),
"train/q_values": old_val.mean().item()}
if not isinstance(intent_logits, type(None)):
log_dict['train/intent_loss'] = intent_loss.item()
if 'buffer_type' in self.args['dqn'] and self.args['dqn']['buffer_type'] == 'prioritized':
log_dict['train/priorization_weights'] = data.weights.mean().item()
wandb.log(log_dict, step=global_step, commit=(train_counter % 250 == 0))
# optimize the model
loss += intent_loss
self.optimizer.zero_grad()
loss.backward()
if self.args['algorithm']["max_grad_norm"] > 0:
torch.nn.utils.clip_grad_value_(self.model.parameters(), self.args['algorithm']["max_grad_norm"])
self.optimizer.step()
# update the target network
if train_counter % self.args['dqn']["target_network_frequency"] == 0:
self.target_network.load_state_dict(self.model.state_dict())
def train_loop(self):
evaluation = self.args['evaluation']["evaluation"]
eval_every_train_timesteps = self.args["evaluation"]["every_train_timesteps"]
eval_dialogs = self.args['evaluation']['dialogs']
#
# agent environment loop
#
timesteps_per_reset = self.args['algorithm']['timesteps_per_reset']
learning_phases = self.args['algorithm']['reset_exploration_times'] + 1 # 0 resets = 1 run
total_timesteps = timesteps_per_reset * learning_phases
self.model.train()
obs: List[Dict[str, Any]] = self.train_env.reset()
global_step = 0
train_counter = 0
episode_counter = 0
# initial evaluation
# self.eval(self.eval_env, eval_dialogs, global_step, prefix="eval")
while global_step < total_timesteps:
epsilon = self._linear_schedule(self.args['dqn']['eps_start'], self.args['dqn']['eps_end'], self.args['dqn']['exploration_fraction'] * timesteps_per_reset, global_step % timesteps_per_reset)
beta = self._beta_schedule(self.args['dqn']['priority_replay_beta'], self.args['dqn']['exploration_fraction'] * timesteps_per_reset, global_step % timesteps_per_reset)
# state = [self.adapter.state_vector(env_obs) for env_obs in obs]
state = self.adapter.batch_state_vector_from_obs(obs, self.args['algorithm']["batch_size"])
# choose and perform next action
# state = [[env_obs[key] for key in env_obs if torch.is_tensor(env_obs[key])] for env_obs in obs]
if self.adapter.configuration.action_config == ActionConfig.ACTIONS_IN_ACTION_SPACE:
actions, _ = self.model.select_actions_eps_greedy(self.train_env.current_nodes_keys, torch.cat(state, dim=0), epsilon)
else:
actions, _ = self.model.select_actions_eps_greedy(self.train_env.current_nodes_keys, pack_sequence(state, enforce_sorted=False), epsilon)
next_obs, rewards, dones, infos = self.train_env.step(actions)
# update buffer and logs
self.store_dqn(obs, next_obs, actions, rewards, dones, infos, global_step)
obs = next_obs
for done_idx, done in enumerate(dones):
if done:
# restart finished environment & log results
episode_counter += 1
info = infos[done_idx]
self.train_episodic_return.log(info[EnvInfo.EPISODE_REWARD])
self.train_episode_length.log(info[EnvInfo.EPISODE_LENGTH])
self.train_success.log(float(info[EnvInfo.REACHED_GOAL_ONCE]))
self.train_goal_asked.log(float(info[EnvInfo.ASKED_GOAL]))
if EXPERIMENT_LOGGING != ExperimentLogging.NONE and episode_counter % self.train_episodic_return.running_avg == 0:
wandb.log({
self.train_episodic_return.name: self.train_episodic_return.eval(),
self.train_episode_length.name: self.train_episode_length.eval(),
self.train_success.name: self.train_success.eval(),
self.train_goal_asked.name: self.train_goal_asked.eval()
}, step=global_step, commit=(global_step % 250 == 0))
obs[done_idx] = self.train_env.reset_single(done_idx)
global_step += 1
#
# Train
#
if self.algorithm == 'dqn' and len(self.rb) >= self.args['dqn']['learning_starts'] and global_step % self.args['dqn']["train_frequency"] == 0:
if self.args['dqn']['buffer_type'] == 'prioritized':
self.rb.update_beta(beta)
self.train_step_dqn(global_step, train_counter)
train_counter += 1
self.log_train_step(global_step=global_step, train_step=train_counter, epsilon=epsilon, timesteps_per_reset=timesteps_per_reset, beta=beta)
#
# Eval
#
if evaluation and global_step % eval_every_train_timesteps == 0:
eval_goal_asked_score = self.eval(self.eval_env, eval_dialogs, global_step, prefix="test")
self._save_checkpoint_with_timeout(goal_asked_score=eval_goal_asked_score, global_step=global_step, episode_counter=episode_counter, train_counter=train_counter, epsilon=epsilon, timeout=300)
self.train_env.close()
def _concat_tensors(self, tensors: List[torch.Tensor]):
if self.spaceadapter_config.action_config == ActionConfig.ACTIONS_IN_ACTION_SPACE:
return torch.cat(tensors, dim=0).to(self.device)
else:
return pack_sequence([tensor.to(self.device) for tensor in tensors], enforce_sorted=False)
def _flatten_list(self, multidim_list):
return reduce(lambda sublist1, sublist2: sublist1 + sublist2, multidim_list)
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "true"
Data.objects[0] = Data.Dataset.fromJSON('traintest_graph.json', version=0)
Data.objects[1] = Data.Dataset.fromJSON('traintest_graph.json', version=1)
trainer = Trainer()
trainer.setUp()
if trainer.algorithm == "dqn":
trainer.train_loop()