forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calc_num.ml
1560 lines (1512 loc) · 68.6 KB
/
calc_num.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ========================================================================= *)
(* Calculation with naturals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Mario Carneiro 2020 *)
(* ========================================================================= *)
needs "wf.ml";;
(* ------------------------------------------------------------------------- *)
(* Simple rule to get rid of NUMERAL constant. *)
(* ------------------------------------------------------------------------- *)
let DENUMERAL = GEN_REWRITE_RULE DEPTH_CONV [NUMERAL];;
(* ------------------------------------------------------------------------- *)
(* Big collection of rewrites to do trivial arithmetic. *)
(* *)
(* Note that we have none for DIV and MOD, and that PRE and SUB are a bit *)
(* inefficient; log(n)^2 instead of log(n). *)
(* ------------------------------------------------------------------------- *)
let ARITH_ZERO = prove
(`(NUMERAL 0 = 0) /\
(BIT0 _0 = _0)`,
REWRITE_TAC[NUMERAL; BIT0; DENUMERAL ADD_CLAUSES]);;
let BIT0_0 = prove
(`BIT0 0 = 0`,
REWRITE_TAC [NUMERAL; ARITH_ZERO]);;
let BIT1_0 = prove
(`BIT1 0 = 1`,
REWRITE_TAC [NUMERAL]);;
let ARITH_SUC = prove
(`(!n. SUC(NUMERAL n) = NUMERAL(SUC n)) /\
(SUC _0 = BIT1 _0) /\
(!n. SUC (BIT0 n) = BIT1 n) /\
(!n. SUC (BIT1 n) = BIT0 (SUC n))`,
REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES]);;
let ARITH_PRE = prove
(`(!n. PRE(NUMERAL n) = NUMERAL(PRE n)) /\
(PRE _0 = _0) /\
(!n. PRE(BIT0 n) = if n = _0 then _0 else BIT1 (PRE n)) /\
(!n. PRE(BIT1 n) = BIT0 n)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL PRE] THEN INDUCT_TAC THEN
REWRITE_TAC[NUMERAL; DENUMERAL PRE; DENUMERAL ADD_CLAUSES; DENUMERAL NOT_SUC;
ARITH_ZERO]);;
let ARITH_ADD = prove
(`(!m n. NUMERAL(m) + NUMERAL(n) = NUMERAL(m + n)) /\
(_0 + _0 = _0) /\
(!n. _0 + BIT0 n = BIT0 n) /\
(!n. _0 + BIT1 n = BIT1 n) /\
(!n. BIT0 n + _0 = BIT0 n) /\
(!n. BIT1 n + _0 = BIT1 n) /\
(!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\
(!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\
(!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\
(!m n. BIT1 m + BIT1 n = BIT0 (SUC(m + n)))`,
PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[ADD_AC]);;
let ARITH_MULT = prove
(`(!m n. NUMERAL(m) * NUMERAL(n) = NUMERAL(m * n)) /\
(_0 * _0 = _0) /\
(!n. _0 * BIT0 n = _0) /\
(!n. _0 * BIT1 n = _0) /\
(!n. BIT0 n * _0 = _0) /\
(!n. BIT1 n * _0 = _0) /\
(!m n. BIT0 m * BIT0 n = BIT0 (BIT0 (m * n))) /\
(!m n. BIT0 m * BIT1 n = BIT0 m + BIT0 (BIT0 (m * n))) /\
(!m n. BIT1 m * BIT0 n = BIT0 n + BIT0 (BIT0 (m * n))) /\
(!m n. BIT1 m * BIT1 n = BIT1 m + BIT0 n + BIT0 (BIT0 (m * n)))`,
PURE_REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL MULT_CLAUSES;
DENUMERAL ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; ADD_AC]);;
let ARITH_EXP = prove
(`(!m n. (NUMERAL m) EXP (NUMERAL n) = NUMERAL(m EXP n)) /\
(_0 EXP _0 = BIT1 _0) /\
(!m. (BIT0 m) EXP _0 = BIT1 _0) /\
(!m. (BIT1 m) EXP _0 = BIT1 _0) /\
(!n. _0 EXP (BIT0 n) = (_0 EXP n) * (_0 EXP n)) /\
(!m n. (BIT0 m) EXP (BIT0 n) = ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
(!m n. (BIT1 m) EXP (BIT0 n) = ((BIT1 m) EXP n) * ((BIT1 m) EXP n)) /\
(!n. _0 EXP (BIT1 n) = _0) /\
(!m n. (BIT0 m) EXP (BIT1 n) =
BIT0 m * ((BIT0 m) EXP n) * ((BIT0 m) EXP n)) /\
(!m n. (BIT1 m) EXP (BIT1 n) =
BIT1 m * ((BIT1 m) EXP n) * ((BIT1 m) EXP n))`,
REWRITE_TAC[NUMERAL] THEN REPEAT STRIP_TAC THEN
TRY(GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [BIT0; BIT1]) THEN
REWRITE_TAC[DENUMERAL EXP; DENUMERAL MULT_CLAUSES; EXP_ADD]);;
let ARITH_EVEN = prove
(`(!n. EVEN(NUMERAL n) <=> EVEN n) /\
(EVEN _0 <=> T) /\
(!n. EVEN(BIT0 n) <=> T) /\
(!n. EVEN(BIT1 n) <=> F)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL EVEN; EVEN_ADD]);;
let ARITH_ODD = prove
(`(!n. ODD(NUMERAL n) <=> ODD n) /\
(ODD _0 <=> F) /\
(!n. ODD(BIT0 n) <=> F) /\
(!n. ODD(BIT1 n) <=> T)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL ODD; ODD_ADD]);;
let ARITH_LE = prove
(`(!m n. NUMERAL m <= NUMERAL n <=> m <= n) /\
((_0 <= _0) <=> T) /\
(!n. (BIT0 n <= _0) <=> n <= _0) /\
(!n. (BIT1 n <= _0) <=> F) /\
(!n. (_0 <= BIT0 n) <=> T) /\
(!n. (_0 <= BIT1 n) <=> T) /\
(!m n. (BIT0 m <= BIT0 n) <=> m <= n) /\
(!m n. (BIT0 m <= BIT1 n) <=> m <= n) /\
(!m n. (BIT1 m <= BIT0 n) <=> m < n) /\
(!m n. (BIT1 m <= BIT1 n) <=> m <= n)`,
REWRITE_TAC[NUMERAL; BIT1; BIT0; DENUMERAL NOT_SUC;
DENUMERAL(GSYM NOT_SUC); SUC_INJ] THEN
REWRITE_TAC[DENUMERAL LE_0] THEN REWRITE_TAC[DENUMERAL LE; GSYM MULT_2] THEN
REWRITE_TAC[LE_MULT_LCANCEL; SUC_INJ;
DENUMERAL MULT_EQ_0; DENUMERAL NOT_SUC] THEN
REWRITE_TAC[DENUMERAL NOT_SUC] THEN REWRITE_TAC[LE_SUC_LT] THEN
REWRITE_TAC[LT_MULT_LCANCEL] THEN
SUBGOAL_THEN `2 = SUC 1` (fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[NUMERAL; BIT0; BIT1; DENUMERAL ADD_CLAUSES];
REWRITE_TAC[DENUMERAL NOT_SUC; NOT_SUC; EQ_MULT_LCANCEL] THEN
REWRITE_TAC[ONCE_REWRITE_RULE[DISJ_SYM] LE_LT] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
SUBGOAL_THEN `~(SUC 1 * m = SUC (SUC 1 * n))`
(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; NUMERAL; BIT1; EVEN]]);;
let ARITH_LT = prove
(`(!m n. NUMERAL m < NUMERAL n <=> m < n) /\
((_0 < _0) <=> F) /\
(!n. (BIT0 n < _0) <=> F) /\
(!n. (BIT1 n < _0) <=> F) /\
(!n. (_0 < BIT0 n) <=> _0 < n) /\
(!n. (_0 < BIT1 n) <=> T) /\
(!m n. (BIT0 m < BIT0 n) <=> m < n) /\
(!m n. (BIT0 m < BIT1 n) <=> m <= n) /\
(!m n. (BIT1 m < BIT0 n) <=> m < n) /\
(!m n. (BIT1 m < BIT1 n) <=> m < n)`,
REWRITE_TAC[NUMERAL; GSYM NOT_LE; ARITH_LE] THEN
REWRITE_TAC[DENUMERAL LE]);;
let ARITH_GE = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LE;;
let ARITH_GT = REWRITE_RULE[GSYM GE; GSYM GT] ARITH_LT;;
let ARITH_EQ = prove
(`(!m n. (NUMERAL m = NUMERAL n) <=> (m = n)) /\
((_0 = _0) <=> T) /\
(!n. (BIT0 n = _0) <=> (n = _0)) /\
(!n. (BIT1 n = _0) <=> F) /\
(!n. (_0 = BIT0 n) <=> (_0 = n)) /\
(!n. (_0 = BIT1 n) <=> F) /\
(!m n. (BIT0 m = BIT0 n) <=> (m = n)) /\
(!m n. (BIT0 m = BIT1 n) <=> F) /\
(!m n. (BIT1 m = BIT0 n) <=> F) /\
(!m n. (BIT1 m = BIT1 n) <=> (m = n))`,
REWRITE_TAC[NUMERAL; GSYM LE_ANTISYM; ARITH_LE] THEN
REWRITE_TAC[LET_ANTISYM; LTE_ANTISYM; DENUMERAL LE_0]);;
let ARITH_SUB = prove
(`(!m n. NUMERAL m - NUMERAL n = NUMERAL(m - n)) /\
(_0 - _0 = _0) /\
(!n. _0 - BIT0 n = _0) /\
(!n. _0 - BIT1 n = _0) /\
(!n. BIT0 n - _0 = BIT0 n) /\
(!n. BIT1 n - _0 = BIT1 n) /\
(!m n. BIT0 m - BIT0 n = BIT0 (m - n)) /\
(!m n. BIT0 m - BIT1 n = PRE(BIT0 (m - n))) /\
(!m n. BIT1 m - BIT0 n = if n <= m then BIT1 (m - n) else _0) /\
(!m n. BIT1 m - BIT1 n = BIT0 (m - n))`,
REWRITE_TAC[NUMERAL; DENUMERAL SUB_0] THEN PURE_REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[GSYM MULT_2; SUB_SUC; LEFT_SUB_DISTRIB] THEN
REWRITE_TAC[SUB] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[DENUMERAL SUB_EQ_0] THEN
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
ASM_REWRITE_TAC[LE_SUC_LT; LT_MULT_LCANCEL; ARITH_EQ] THEN
POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
REWRITE_TAC[ADD1; LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[ADD_SUB2; GSYM ADD_ASSOC]);;
let ARITH = end_itlist CONJ
[ARITH_ZERO; ARITH_SUC; ARITH_PRE;
ARITH_ADD; ARITH_MULT; ARITH_EXP;
ARITH_EVEN; ARITH_ODD;
ARITH_EQ; ARITH_LE; ARITH_LT; ARITH_GE; ARITH_GT;
ARITH_SUB];;
let EXP_2_NE_0 = prove
(`!n. ~(2 EXP n = 0)`,
REWRITE_TAC [EXP_EQ_0; ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Now more delicate conversions for situations where efficiency matters. *)
(* ------------------------------------------------------------------------- *)
let NUM_EVEN_CONV =
let tth,rths = CONJ_PAIR ARITH_EVEN in
GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;
let NUM_ODD_CONV =
let tth,rths = CONJ_PAIR ARITH_ODD in
GEN_REWRITE_CONV I [tth] THENC GEN_REWRITE_CONV I [rths];;
let NUM_SUC_CONV,NUM_ADD_CONV,NUM_MULT_CONV,NUM_EXP_CONV,
NUM_LT_CONV,NUM_LE_CONV,NUM_EQ_CONV =
let num_ty = type_of(lhand(concl ZERO_DEF)) in
let Comb(NUMERAL_tm,Comb(BIT0_tm,Comb(BIT1_tm,zero_tm))) =
mk_small_numeral 2
and suc_tm = rator(rand(concl TWO))
and one_tm = rand(mk_small_numeral 1)
and add_tm = rator(rator(lhand(snd(strip_forall(concl ADD_0)))))
and mul_tm = rator(rator(rand(snd(strip_forall(concl EXP_2)))))
and exp_tm = rator(rator(lhand(snd(strip_forall(concl EXP_2)))))
and eq_tm = rator(rator(concl TWO)) in
let num_0 = num 0 and num_1 = num 1 and num_2 = num 2 in
let a_tm = mk_var("a",num_ty)
and b_tm = mk_var("b",num_ty)
and c_tm = mk_var("c",num_ty)
and d_tm = mk_var("d",num_ty)
and e_tm = mk_var("e",num_ty)
and h_tm = mk_var("h",num_ty)
and l_tm = mk_var("l",num_ty)
and m_tm = mk_var("m",num_ty)
and n_tm = mk_var("n",num_ty)
and p_tm = mk_var("p",num_ty) in
let STANDARDIZE =
let ilist = [BIT0_tm,BIT0_tm; BIT1_tm,BIT1_tm; zero_tm,zero_tm;
suc_tm,suc_tm; add_tm,add_tm; mul_tm,mul_tm;
exp_tm,exp_tm; eq_tm,eq_tm; NUMERAL_tm,NUMERAL_tm;
a_tm,a_tm; b_tm,b_tm; c_tm,c_tm; d_tm,d_tm; e_tm,e_tm;
h_tm,h_tm; l_tm,l_tm; m_tm,m_tm; n_tm,n_tm; p_tm,p_tm] in
let rec replace tm =
match tm with
Var(_,_) | Const(_,_) -> rev_assocd tm ilist tm
| Comb(s,t) -> mk_comb(replace s,replace t)
| Abs(_,_) -> failwith "replace" in
fun th -> let tm' = replace (concl th) in EQ_MP (REFL tm') th in
let REFL_bit0 = STANDARDIZE(REFL BIT0_tm)
and REFL_bit1 = STANDARDIZE(REFL BIT1_tm) in
let AP_BIT0 th = MK_COMB(REFL_bit0,th)
and AP_BIT1 th = MK_COMB(REFL_bit1,th)
and QUICK_PROVE_HYP ath bth = EQ_MP (DEDUCT_ANTISYM_RULE ath bth) ath in
let rec dest_raw_numeral tm =
match tm with
Comb(Const("BIT1",_),t) -> num_2 */ dest_raw_numeral t +/ num_1
| Comb(Const("BIT0",_),t) -> num_2 */ dest_raw_numeral t
| Const("_0",_) -> num_0 in
let bitcounts =
let rec bctr w z tm =
match tm with
Const("_0",_) -> (w,z)
| Comb(Const("BIT0",_),t) -> bctr w (z + 1) t
| Comb(Const("BIT1",_),t) -> bctr (w + 1) z t
| _ -> failwith "malformed numeral" in
bctr 0 0 in
let rec wellformed tm =
match tm with
Const("_0",_) -> true
| Comb(Const("BIT0",_),t)|Comb(Const("BIT1",_),t) -> wellformed t
| _ -> false in
let rec orderrelation mtm ntm =
if mtm == ntm then
if wellformed mtm then 0 else failwith "orderrelation"
else
match (mtm,ntm) with
Const("_0",_),Const("_0",_) -> 0
| Const("_0",_),_ ->
if wellformed ntm then -1 else failwith "orderrelation"
| _, Const("_0",_) ->
if wellformed ntm then 1 else failwith "orderrelation"
| Comb(Const("BIT0",_),mt),Comb(Const("BIT0",_),nt)
| Comb(Const("BIT1",_),mt),Comb(Const("BIT1",_),nt) ->
orderrelation mt nt
| Comb(Const("BIT0",_),mt),Comb(Const("BIT1",_),nt) ->
if orderrelation mt nt > 0 then 1 else -1
| Comb(Const("BIT1",_),mt),Comb(Const("BIT0",_),nt) ->
if orderrelation mt nt < 0 then -1 else 1 in
let doublebn tm = if tm = zero_tm then tm else mk_comb(BIT0_tm,tm) in
let rec subbn mtm ntm =
match (mtm,ntm) with
(_,Const("_0",_)) -> mtm
| (Comb(Const("BIT0",_),mt),Comb(Const("BIT0",_),nt)) ->
doublebn (subbn mt nt)
| (Comb(Const("BIT1",_),mt),Comb(Const("BIT1",_),nt)) ->
doublebn (subbn mt nt)
| (Comb(Const("BIT1",_),mt),Comb(Const("BIT0",_),nt)) ->
mk_comb(BIT1_tm,subbn mt nt)
| (Comb(Const("BIT0",_),mt),Comb(Const("BIT1",_),nt)) ->
mk_comb(BIT1_tm,sbcbn mt nt)
| _ -> failwith "malformed numeral or wrong relation"
and sbcbn mtm ntm =
match (mtm,ntm) with
| (Comb(Const("BIT0",_),mt),Const("_0",_)) ->
mk_comb(BIT1_tm,sbcbn mt ntm)
| (Comb(Const("BIT1",_),mt),Const("_0",_)) ->
doublebn mt
| (Comb(Const("BIT0",_),mt),Comb(Const("BIT0",_),nt)) ->
mk_comb(BIT1_tm,sbcbn mt nt)
| (Comb(Const("BIT1",_),mt),Comb(Const("BIT1",_),nt)) ->
mk_comb(BIT1_tm,sbcbn mt nt)
| (Comb(Const("BIT1",_),mt),Comb(Const("BIT0",_),nt)) ->
doublebn (subbn mt nt)
| (Comb(Const("BIT0",_),mt),Comb(Const("BIT1",_),nt)) ->
doublebn (sbcbn mt nt)
| _ -> failwith "malformed numeral or wrong relation" in
let topsplit tm =
match tm with
Const("_0",_) -> 0,zero_tm
| Comb(Const("BIT1",_),Const("_0",_)) -> 1,zero_tm
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Const("_0",_))) -> 2,zero_tm
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Const("_0",_))) -> 3,zero_tm
| Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Const("_0",_)))) -> 4,zero_tm
| Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Const("_0",_)))) -> 5,zero_tm
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Const("_0",_)))) -> 6,zero_tm
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Const("_0",_)))) -> 7,zero_tm
| Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),n)))) -> 0,n
| Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),n)))) -> 1,n
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),n)))) -> 2,n
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),n)))) -> 3,n
| Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),n)))) -> 4,n
| Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),n)))) -> 5,n
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),n)))) -> 6,n
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),n)))) -> 7,n
| Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),n)))) -> 8,n
| Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),n)))) -> 9,n
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),n)))) -> 10,n
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),n)))) -> 11,n
| Comb(Const("BIT0",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),n)))) -> 12,n
| Comb(Const("BIT1",_),Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),n)))) -> 13,n
| Comb(Const("BIT0",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),n)))) -> 14,n
| Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),Comb(Const("BIT1",_),n)))) -> 15,n
| _ -> failwith "malformed numeral" in
let NUM_ADD_RULE,NUM_ADC_RULE =
let rec mk_compnumeral k base =
if k = 0 then base else
let t = mk_compnumeral (k / 2) base in
if k mod 2 = 1 then mk_comb(BIT1_tm,t) else mk_comb(BIT0_tm,t) in
let bases v =
let part2 = map (fun k -> mk_compnumeral k v) (8--15) in
let part1 = map (subst[mk_comb(BIT0_tm,v),mk_comb(BIT1_tm,v)])
part2
and part0 = map (fun k -> mk_compnumeral k zero_tm) (0--15) in
part0 @ part1 @ part2 in
let starts =
allpairs (fun mtm ntm ->
mk_comb(mk_comb(add_tm,mtm),ntm)) (bases m_tm) (bases n_tm) in
let BITS_INJ = (STANDARDIZE o prove)
(`(BIT0 m = BIT0 n <=> m = n) /\
(BIT1 m = BIT1 n <=> m = n)`,
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[SUC_INJ; EQ_MULT_LCANCEL; ARITH_EQ]) in
let ARITH_0 = (STANDARDIZE o MESON[NUMERAL; ADD_CLAUSES])
`m + _0 = m /\ _0 + n = n` in
let patadj = subst[`SUC(m + _0)`,`SUC m`; `SUC(_0 + n)`,`SUC n`] in
let mkclauses sucflag t =
let tm = if sucflag then mk_comb(suc_tm,t) else t in
let th1 = PURE_REWRITE_CONV[ARITH_ADD; ARITH_SUC; ARITH_0] tm in
let tm1 = patadj(rand(concl th1)) in
if not(free_in add_tm tm1) then th1,
(if free_in m_tm tm1 then 0 else 1) else
let ptm = rand(rand(rand(rand tm1))) in
let tmc = mk_eq(mk_eq(ptm,p_tm),mk_eq(tm,subst[p_tm,ptm] tm1)) in
EQT_ELIM(REWRITE_CONV[ARITH_ADD; ARITH_SUC; ARITH_0; BITS_INJ] tmc),
(if free_in suc_tm tm1 then 3 else 2) in
let add_clauses,add_flags =
let l1,l2 = unzip(map (mkclauses false) starts) in
Array.of_list(map STANDARDIZE l1),Array.of_list l2 in
let adc_clauses,adc_flags =
let l1,l2 = unzip(map (mkclauses true) starts) in
Array.of_list(map STANDARDIZE l1),Array.of_list l2 in
let rec NUM_ADD_RULE mtm ntm =
let m_lo,m_hi = topsplit mtm
and n_lo,n_hi = topsplit ntm in
let m_ind = if m_hi = zero_tm then m_lo else m_lo + 16
and n_ind = if n_hi = zero_tm then n_lo else n_lo + 16 in
let ind = 32 * m_ind + n_ind in
let th1 = Array.get add_clauses ind
and fl = Array.get add_flags ind in
match fl with
0 -> INST [m_hi,m_tm] th1
| 1 -> INST [n_hi,n_tm] th1
| 2 -> let th2 = NUM_ADD_RULE m_hi n_hi in
(match concl th2 with Comb(_,ptm) ->
let th3 = INST [m_hi,m_tm; n_hi,n_tm;ptm,p_tm] th1 in
EQ_MP th3 th2)
| 3 -> let th2 = NUM_ADC_RULE m_hi n_hi in
(match concl th2 with Comb(_,ptm) ->
let th3 = INST [m_hi,m_tm; n_hi,n_tm;ptm,p_tm] th1 in
EQ_MP th3 th2)
and NUM_ADC_RULE mtm ntm =
let m_lo,m_hi = topsplit mtm
and n_lo,n_hi = topsplit ntm in
let m_ind = if m_hi = zero_tm then m_lo else m_lo + 16
and n_ind = if n_hi = zero_tm then n_lo else n_lo + 16 in
let ind = 32 * m_ind + n_ind in
let th1 = Array.get adc_clauses ind
and fl = Array.get adc_flags ind in
match fl with
0 -> INST [m_hi,m_tm] th1
| 1 -> INST [n_hi,n_tm] th1
| 2 -> let th2 = NUM_ADD_RULE m_hi n_hi in
(match concl th2 with Comb(_,ptm) ->
let th3 = INST [m_hi,m_tm; n_hi,n_tm;ptm,p_tm] th1 in
EQ_MP th3 th2)
| 3 -> let th2 = NUM_ADC_RULE m_hi n_hi in
(match concl th2 with Comb(_,ptm) ->
let th3 = INST [m_hi,m_tm; n_hi,n_tm;ptm,p_tm] th1 in
EQ_MP th3 th2) in
NUM_ADD_RULE,NUM_ADC_RULE in
let NUM_SHIFT_CONV =
let pth_0 = (STANDARDIZE o prove)
(`(n = a + p * b <=> BIT0 n = BIT0 a + BIT0 p * b)`,
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[GSYM MULT_2; GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ])
and pth_z = (STANDARDIZE o prove)
(`n = _0 + p * b <=> BIT0 n = _0 + BIT0 p * b`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[BIT1; BIT0] THEN
REWRITE_TAC[ADD_CLAUSES; GSYM MULT_2] THEN
REWRITE_TAC[GSYM MULT_ASSOC; EQ_MULT_LCANCEL; ARITH_EQ])
and pth_1 = (STANDARDIZE o prove)
(`(n = a + p * b <=> BIT1 n = BIT1 a + BIT0 p * b)`,
REWRITE_TAC[BIT0; BIT1] THEN
REWRITE_TAC[GSYM MULT_2; GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB;
ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ])
and pth_base = (STANDARDIZE o prove)
(`n = _0 + BIT1 _0 * n`,
MESON_TAC[ADD_CLAUSES; MULT_CLAUSES; NUMERAL])
and pth_triv = (STANDARDIZE o prove)
(`_0 = a + p * b <=> _0 = a + BIT0 p * b`,
CONV_TAC(BINOP_CONV SYM_CONV) THEN
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[ADD_EQ_0; MULT_EQ_0; BIT0])
and pths_1 = (Array.of_list o CONJUNCTS o STANDARDIZE o prove)
(`(n = a + p * b <=>
BIT0(BIT0(BIT0(BIT0 n))) =
BIT0(BIT0(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT0(BIT0(BIT0 n))) =
BIT1(BIT0(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT1(BIT0(BIT0 n))) =
BIT0(BIT1(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT1(BIT0(BIT0 n))) =
BIT1(BIT1(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT0(BIT1(BIT0 n))) =
BIT0(BIT0(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT0(BIT1(BIT0 n))) =
BIT1(BIT0(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT1(BIT1(BIT0 n))) =
BIT0(BIT1(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT1(BIT1(BIT0 n))) =
BIT1(BIT1(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT0(BIT0(BIT1 n))) =
BIT0(BIT0(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT0(BIT0(BIT1 n))) =
BIT1(BIT0(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT1(BIT0(BIT1 n))) =
BIT0(BIT1(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT1(BIT0(BIT1 n))) =
BIT1(BIT1(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT0(BIT1(BIT1 n))) =
BIT0(BIT0(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT0(BIT1(BIT1 n))) =
BIT1(BIT0(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT0(BIT1(BIT1(BIT1 n))) =
BIT0(BIT1(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = a + p * b <=>
BIT1(BIT1(BIT1(BIT1 n))) =
BIT1(BIT1(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b)`,
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT0) THEN
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT1) THEN
ABBREV_TAC `two = 2` THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
REWRITE_TAC[ADD_CLAUSES; SUC_INJ; EQ_MULT_LCANCEL; ARITH_EQ;
GSYM LEFT_ADD_DISTRIB; GSYM MULT_ASSOC])
and pths_0 = (Array.of_list o CONJUNCTS o STANDARDIZE o prove)
(`(n = _0 + p * b <=>
BIT0(BIT0(BIT0(BIT0 n))) =
_0 + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT0(BIT0(BIT0 n))) =
BIT1 _0 + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT1(BIT0(BIT0 n))) =
BIT0(BIT1 _0) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT1(BIT0(BIT0 n))) =
BIT1(BIT1 _0) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT0(BIT1(BIT0 n))) =
BIT0(BIT0(BIT1 _0)) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT0(BIT1(BIT0 n))) =
BIT1(BIT0(BIT1 _0)) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT1(BIT1(BIT0 n))) =
BIT0(BIT1(BIT1 _0)) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT1(BIT1(BIT0 n))) =
BIT1(BIT1(BIT1 _0)) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT0(BIT0(BIT1 n))) =
BIT0(BIT0(BIT0(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT0(BIT0(BIT1 n))) =
BIT1(BIT0(BIT0(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT1(BIT0(BIT1 n))) =
BIT0(BIT1(BIT0(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT1(BIT0(BIT1 n))) =
BIT1(BIT1(BIT0(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT0(BIT1(BIT1 n))) =
BIT0(BIT0(BIT1(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT0(BIT1(BIT1 n))) =
BIT1(BIT0(BIT1(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT0(BIT1(BIT1(BIT1 n))) =
BIT0(BIT1(BIT1(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b) /\
(n = _0 + p * b <=>
BIT1(BIT1(BIT1(BIT1 n))) =
BIT1(BIT1(BIT1(BIT1 _0))) + BIT0(BIT0(BIT0(BIT0 p))) * b)`,
SUBST1_TAC(MESON[NUMERAL] `_0 = 0`) THEN
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT0) THEN
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT1) THEN
ABBREV_TAC `two = 2` THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
REWRITE_TAC[ADD_CLAUSES; SUC_INJ; EQ_MULT_LCANCEL; ARITH_EQ;
GSYM LEFT_ADD_DISTRIB; GSYM MULT_ASSOC]) in
let rec NUM_SHIFT_CONV k tm =
if k <= 0 then INST [tm,n_tm] pth_base else
match tm with
Comb(_,Comb(_,Comb(_,Comb(_,_)))) when k >= 4 ->
let i,ntm = topsplit tm in
let th1 = NUM_SHIFT_CONV (k - 4) ntm in
(match concl th1 with
Comb(_,Comb(Comb(_,Const("_0",_)),Comb(Comb(_,ptm),btm))) ->
let th2 = Array.get pths_0 i in
let th3 = INST [ntm,n_tm; btm,b_tm; ptm,p_tm] th2 in
EQ_MP th3 th1
| Comb(_,Comb(Comb(_,atm),Comb(Comb(_,ptm),btm))) ->
let th2 = Array.get pths_1 i in
let th3 = INST[ntm,n_tm; atm,a_tm; btm,b_tm; ptm,p_tm] th2 in
EQ_MP th3 th1)
| Comb(Const("BIT0",_),ntm) ->
let th1 = NUM_SHIFT_CONV (k - 1) ntm in
(match concl th1 with
Comb(_,Comb(Comb(_,Const("_0",_)),Comb(Comb(_,ptm),btm))) ->
EQ_MP (INST [ntm,n_tm; btm,b_tm; ptm,p_tm] pth_z) th1
| Comb(_,Comb(Comb(_,atm),Comb(Comb(_,ptm),btm))) ->
EQ_MP
(INST[ntm,n_tm; atm,a_tm; btm,b_tm; ptm,p_tm] pth_0) th1)
| Comb(Const("BIT1",_),ntm) ->
let th1 = NUM_SHIFT_CONV (k - 1) ntm in
(match concl th1 with
Comb(_,Comb(Comb(_,atm),Comb(Comb(_,ptm),btm))) ->
EQ_MP
(INST [ntm,n_tm; atm,a_tm; btm,b_tm; ptm,p_tm] pth_1) th1)
| Const("_0",_) ->
let th1 = NUM_SHIFT_CONV (k - 1) tm in
(match concl th1 with
Comb(_,Comb(Comb(_,atm),Comb(Comb(_,ptm),btm))) ->
EQ_MP (INST [atm,a_tm; btm,b_tm; ptm,p_tm] pth_triv)
th1)
| _ -> failwith "malformed numeral" in
NUM_SHIFT_CONV in
let NUM_UNSHIFT_CONV =
let pth_triv = (STANDARDIZE o prove)
(`a + p * _0 = a`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES])
and pth_base = (STANDARDIZE o prove)
(`a + BIT1 _0 * b = a + b`,
SUBST1_TAC(SYM(SPEC `BIT1 _0` NUMERAL)) THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES])
and pth_0 = (STANDARDIZE o prove)
(`BIT0 a + BIT0 p * b = BIT0(a + p * b)`,
REWRITE_TAC[BIT0] THEN REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB])
and pth_1 = (STANDARDIZE o prove)
(`BIT1 a + BIT0 p * b = BIT1(a + p * b)`,
REWRITE_TAC[BIT0; BIT1] THEN REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[ADD_CLAUSES; SUC_INJ] THEN
REWRITE_TAC[GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ])
and pth_z = (STANDARDIZE o prove)
(`_0 + BIT0 p * b = BIT0(_0 + p * b)`,
SUBST1_TAC(SYM(SPEC `_0` NUMERAL)) THEN
REWRITE_TAC[BIT1; BIT0] THEN REWRITE_TAC[ADD_CLAUSES] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB])
and puths_1 = (Array.of_list o CONJUNCTS o STANDARDIZE o prove)
(`(a + p * b = n <=>
BIT0(BIT0(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT0(BIT0(BIT0 n)))) /\
(a + p * b = n <=>
BIT1(BIT0(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT0(BIT0(BIT0 n)))) /\
(a + p * b = n <=>
BIT0(BIT1(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT1(BIT0(BIT0 n)))) /\
(a + p * b = n <=>
BIT1(BIT1(BIT0(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT1(BIT0(BIT0 n)))) /\
(a + p * b = n <=>
BIT0(BIT0(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT0(BIT1(BIT0 n)))) /\
(a + p * b = n <=>
BIT1(BIT0(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT0(BIT1(BIT0 n)))) /\
(a + p * b = n <=>
BIT0(BIT1(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT1(BIT1(BIT0 n)))) /\
(a + p * b = n <=>
BIT1(BIT1(BIT1(BIT0 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT1(BIT1(BIT0 n)))) /\
(a + p * b = n <=>
BIT0(BIT0(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT0(BIT0(BIT1 n)))) /\
(a + p * b = n <=>
BIT1(BIT0(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT0(BIT0(BIT1 n)))) /\
(a + p * b = n <=>
BIT0(BIT1(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT1(BIT0(BIT1 n)))) /\
(a + p * b = n <=>
BIT1(BIT1(BIT0(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT1(BIT0(BIT1 n)))) /\
(a + p * b = n <=>
BIT0(BIT0(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT0(BIT1(BIT1 n)))) /\
(a + p * b = n <=>
BIT1(BIT0(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT0(BIT1(BIT1 n)))) /\
(a + p * b = n <=>
BIT0(BIT1(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT0(BIT1(BIT1(BIT1 n)))) /\
(a + p * b = n <=>
BIT1(BIT1(BIT1(BIT1 a))) + BIT0(BIT0(BIT0(BIT0 p))) * b =
BIT1(BIT1(BIT1(BIT1 n))))`,
SUBST1_TAC(MESON[NUMERAL] `_0 = 0`) THEN
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT0) THEN
MP_TAC(REWRITE_RULE[GSYM MULT_2] BIT1) THEN
ABBREV_TAC `two = 2` THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
REWRITE_TAC[ADD_CLAUSES; SUC_INJ; EQ_MULT_LCANCEL; ARITH_EQ;
GSYM LEFT_ADD_DISTRIB; GSYM MULT_ASSOC]) in
let puths_2 = Array.of_list
(map (fun i -> let th1 = Array.get puths_1 (i mod 16)
and th2 = Array.get puths_1 (i / 16) in
let th3 = GEN_REWRITE_RULE RAND_CONV [th1] th2 in
STANDARDIZE th3) (0--255)) in
let rec NUM_UNSHIFT_CONV tm =
match tm with
Comb(Comb(Const("+",_),atm),Comb(Comb(Const("*",_),ptm),btm)) ->
(match (atm,ptm,btm) with
(_,_,Const("_0",_)) ->
INST [atm,a_tm; ptm,p_tm] pth_triv
| (_,Comb(Const("BIT1",_),Const("_0",_)),_) ->
let th1 = INST [atm,a_tm; btm,b_tm] pth_base in
let Comb(_,Comb(Comb(_,mtm),ntm)) = concl th1 in
TRANS th1 (NUM_ADD_RULE mtm ntm)
| (Comb(_,Comb(_,Comb(_,Comb(_,atm')))),
Comb(_,Comb(_,Comb(_,Comb(_,(Comb(_,_) as ptm'))))),_) ->
let i,_ = topsplit atm in
(match (atm',ptm') with
(Comb(_,Comb(_,Comb(_,Comb(_,atm'')))),
Comb(_,Comb(_,Comb(_,Comb(_,(Comb(_,_) as ptm'')))))) ->
let j,_ = topsplit atm' in
let tm' = mk_comb(mk_comb(add_tm,atm''),
mk_comb(mk_comb(mul_tm,ptm''),btm)) in
let th1 = NUM_UNSHIFT_CONV tm' in
let th2 = INST [atm'',a_tm; ptm'',p_tm; btm,b_tm;
rand(concl th1),n_tm]
(Array.get puths_2 (16 * j + i)) in
EQ_MP th2 th1
| _ ->
let tm' = mk_comb(mk_comb(add_tm,atm'),
mk_comb(mk_comb(mul_tm,ptm'),btm)) in
let th1 = NUM_UNSHIFT_CONV tm' in
let th2 = INST [atm',a_tm; ptm',p_tm; btm,b_tm;
rand(concl th1),n_tm]
(Array.get puths_1 i) in
EQ_MP th2 th1)
| (Const("_0",_),Comb(Const("BIT0",_),qtm),_) ->
let th1 = INST [btm,b_tm; qtm,p_tm] pth_z in
CONV_RULE(RAND_CONV(RAND_CONV NUM_UNSHIFT_CONV)) th1
| (Comb(Const("BIT0",_),ctm),Comb(Const("BIT0",_),qtm),_) ->
let th1 = INST [ctm,a_tm; btm,b_tm; qtm,p_tm] pth_0 in
CONV_RULE(RAND_CONV(RAND_CONV NUM_UNSHIFT_CONV)) th1
| (Comb(Const("BIT1",_),ctm),Comb(Const("BIT0",_),qtm),_) ->
let th1 = INST [ctm,a_tm; btm,b_tm; qtm,p_tm] pth_1 in
CONV_RULE(RAND_CONV(RAND_CONV NUM_UNSHIFT_CONV)) th1
| _ -> failwith "malformed numeral")
| _ -> failwith "malformed numeral" in
NUM_UNSHIFT_CONV in
let NUM_SQUARE_RULE =
let pth_0 = (STANDARDIZE o prove)
(`_0 EXP 2 = _0`,
MESON_TAC[NUMERAL; REWRITE_CONV[ARITH] `0 EXP 2`])
and pth_1 = (STANDARDIZE o prove)
(`(BIT1 _0) EXP 2 = BIT1 _0`,
MESON_TAC[NUMERAL; REWRITE_CONV[ARITH] `1 EXP 2`])
and pth_even = (STANDARDIZE o prove)
(`m EXP 2 = n <=> (BIT0 m) EXP 2 = BIT0(BIT0 n)`,
ABBREV_TAC `two = 2` THEN
REWRITE_TAC[BIT0] THEN EXPAND_TAC "two" THEN
REWRITE_TAC[GSYM MULT_2] THEN REWRITE_TAC[EXP_2] THEN
REWRITE_TAC[AC MULT_AC `(2 * m) * (2 * n) = 2 * 2 * m * n`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ])
and pth_odd = (STANDARDIZE o prove)
(`m EXP 2 = n <=> (BIT1 m) EXP 2 = BIT1(BIT0(m + n))`,
ABBREV_TAC `two = 2` THEN
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
EXPAND_TAC "two" THEN REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN
REWRITE_TAC[SUC_INJ; GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[AC ADD_AC `(m + m * 2 * m) + m = m * 2 * m + m + m`] THEN
REWRITE_TAC[GSYM MULT_2; AC MULT_AC `m * 2 * m = 2 * m * m`] THEN
REWRITE_TAC[GSYM MULT_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ADD_SYM] THEN
REWRITE_TAC[EQ_ADD_RCANCEL])
and pth_qstep = (UNDISCH o STANDARDIZE o prove)
(`n + BIT1 _0 = m /\
m EXP 2 = p /\
m + a = BIT0(BIT0 p)
==> (BIT1(BIT1(BIT1 n))) EXP 2 = BIT1(BIT0(BIT0(BIT0 a)))`,
ABBREV_TAC `two = 2` THEN
SUBST1_TAC(MESON[NUMERAL] `_0 = 0`) THEN
REWRITE_TAC[BIT1; BIT0] THEN EXPAND_TAC "two" THEN
REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[ADD1; LEFT_ADD_DISTRIB; GSYM ADD_ASSOC] THEN
REWRITE_TAC[MULT_ASSOC] THEN REWRITE_TAC[ARITH] THEN
REWRITE_TAC[IMP_CONJ] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN DISCH_TAC THEN
MATCH_MP_TAC(MESON[EQ_ADD_LCANCEL]
`!m:num. m + n = m + p ==> n = p`) THEN
EXISTS_TAC `16 * (n + 1)` THEN
ASM_REWRITE_TAC[ADD_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
EXPAND_TAC "two" THEN REWRITE_TAC[EXP_2] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_CLAUSES; MULT_ASSOC] THEN
REWRITE_TAC[AC MULT_AC `(8 * n) * NUMERAL p = (8 * NUMERAL p) * n`] THEN
REWRITE_TAC[ARITH] THEN
REWRITE_TAC[AC ADD_AC
`(n + 16) + p + q + 49 = (n + p + q) + (16 + 49)`] THEN
REWRITE_TAC[GSYM ADD_ASSOC] THEN REWRITE_TAC[ARITH] THEN
REWRITE_TAC[ADD_ASSOC; EQ_ADD_RCANCEL] THEN
REWRITE_TAC[GSYM ADD_ASSOC; GSYM MULT_2; MULT_ASSOC] THEN
ONCE_REWRITE_TAC[AC ADD_AC `a + b + c:num = b + a + c`] THEN
REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[ARITH])
and pth_rec = (UNDISCH o STANDARDIZE o prove)
(`n = l + p * h /\
h + l = m /\
h EXP 2 = a /\
l EXP 2 = c /\
m EXP 2 = d /\
a + c = e /\
e + b = d
==> n EXP 2 = c + p * (b + p * a)`,
REWRITE_TAC[IMP_CONJ] THEN
DISCH_THEN SUBST1_TAC THEN
REPLICATE_TAC 5 (DISCH_THEN(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[EXP_2; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_AC] THEN CONV_TAC(BINOP_CONV NUM_CANCEL_CONV) THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC])
and pth_toom3 = (STANDARDIZE o prove)
(`h EXP 2 = e /\
l EXP 2 = a /\
(l + BIT1 _0 * (m + BIT1 _0 * h)) EXP 2 =
a + BIT1 _0 * (b + BIT1 _0 * (c + BIT1 _0 * (d + BIT1 _0 * e))) /\
(l + BIT0(BIT1 _0) * (m + BIT0(BIT1 _0) * h)) EXP 2 =
a + BIT0(BIT1 _0) * (b + BIT0(BIT1 _0) *
(c + BIT0(BIT1 _0) * (d + BIT0(BIT1 _0) * e))) /\
(h + BIT0(BIT1 _0) * (m + BIT0(BIT1 _0) * l)) EXP 2 =
e + BIT0(BIT1 _0) * (d + BIT0(BIT1 _0) *
(c + BIT0(BIT1 _0) * (b + BIT0(BIT1 _0) * a)))
==> (l + p * (m + p * h)) EXP 2 =
a + p * (b + p * (c + p * (d + p * e)))`,
ABBREV_TAC `two = 2` THEN
SUBST1_TAC(MESON[NUMERAL] `_0 = 0`) THEN
REWRITE_TAC[BIT1; BIT0] THEN
EXPAND_TAC "two" THEN REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[ARITH] THEN
SUBGOAL_THEN
`!p x y z. (x + p * (y + p * z)) EXP 2 =
x * x + p * (2 * x * y + p * ((2 * x * z + y * y) +
p * (2 * y * z + p * z * z)))`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[EXP_2; MULT_2; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC];
REWRITE_TAC[EXP_2]] THEN
MAP_EVERY ABBREV_TAC
[`a':num = l * l`; `b' = 2 * l * m`; `c' = 2 * l * h + m * m`;
`d' = 2 * m * h`; `e':num = h * h`] THEN
SUBST1_TAC(AC MULT_AC `2 * m * l = 2 * l * m`) THEN
SUBST1_TAC(AC MULT_AC `2 * h * l = 2 * l * h`) THEN
SUBST1_TAC(AC MULT_AC `2 * h * m = 2 * m * h`) THEN
ASM_REWRITE_TAC[] THEN EXPAND_TAC "two" THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
ASM_CASES_TAC `a':num = a` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `e':num = e` THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC] THEN
REWRITE_TAC[ARITH] THEN
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REWRITE_TAC[ADD_ASSOC; EQ_ADD_RCANCEL] THEN
REWRITE_TAC[GSYM ADD_ASSOC] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[]
`b = b' /\ c = c' /\ d = d'
==> 5 * b + c' + d' = 5 * b' + c + d`)) THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC] THEN
REWRITE_TAC(map (fun k ->
SYM(REWRITE_CONV[ARITH_SUC]
(mk_comb(suc_tm,mk_small_numeral(k - 1)))))
(1--5)) THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
CONV_TAC(LAND_CONV NUM_CANCEL_CONV) THEN DISCH_THEN SUBST_ALL_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[]
`b = b' /\ c = c' /\ d = d'
==> b + d':num = b' + d /\ 4 * b + d' = 4 * b' + d`)) THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC] THEN
REWRITE_TAC(map (fun k ->
SYM(REWRITE_CONV[ARITH_SUC]
(mk_comb(suc_tm,mk_small_numeral(k - 1)))))
(1--4)) THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
CONV_TAC(LAND_CONV(BINOP_CONV NUM_CANCEL_CONV)) THEN
REWRITE_TAC[GSYM MULT_2] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
REWRITE_TAC[GSYM(el 4 (CONJUNCTS MULT_CLAUSES))] THEN
SIMP_TAC[EQ_MULT_LCANCEL; NOT_SUC])
and pth_even3 = (STANDARDIZE o prove)
(`m EXP 2 = n <=>
(BIT0(BIT0(BIT0 m))) EXP 2 = BIT0(BIT0(BIT0(BIT0(BIT0(BIT0 n)))))`,
ABBREV_TAC `two = 2` THEN
REWRITE_TAC[BIT0] THEN REWRITE_TAC[GSYM MULT_2] THEN
EXPAND_TAC "two" THEN REWRITE_TAC[EXP_2] THEN
REWRITE_TAC[AC MULT_AC
`(2 * 2 * 2 * m) * 2 * 2 * 2 * m = 2 * 2 * 2 * 2 * 2 * 2 * m * m`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; ARITH_EQ]) in
let NUM_UNSHIFT2_CONV =
RAND_CONV(RAND_CONV NUM_UNSHIFT_CONV) THENC NUM_UNSHIFT_CONV in
let NUM_UNSHIFT3_CONV =
RAND_CONV(RAND_CONV NUM_UNSHIFT2_CONV) THENC NUM_UNSHIFT_CONV in
let NUM_UNSHIFT4_CONV =
RAND_CONV(RAND_CONV NUM_UNSHIFT3_CONV) THENC NUM_UNSHIFT_CONV in
let BINOP2_CONV conv1 conv2 = COMB2_CONV (RAND_CONV conv1) conv2 in
let TOOM3_CONV = BINOP2_CONV
(LAND_CONV NUM_UNSHIFT2_CONV) NUM_UNSHIFT4_CONV in
let rec GEN_NUM_SQUARE_RULE w z tm =
match tm with
Const("_0",_) -> pth_0
| Comb(Const("BIT0",_),mtm) ->
(match mtm with
Comb(Const("BIT0",_),Comb(Const("BIT0",_),ptm)) ->
let th1 = GEN_NUM_SQUARE_RULE w (z - 3) ptm in
let ntm = rand(concl th1) in
EQ_MP (INST [ptm,m_tm; ntm,n_tm] pth_even3) th1
| _ ->
let th1 = GEN_NUM_SQUARE_RULE w (z - 1) mtm in
let ntm = rand(concl th1) in
EQ_MP (INST [mtm,m_tm; ntm,n_tm] pth_even) th1)
| Comb(Const("BIT1",_),mtm) ->
if mtm = zero_tm then pth_1 else
if (w < 100 || z < 20) && w + z < 150 then
match mtm with
Comb(Const("BIT1",_),Comb(Const("BIT1",_),ntm)) ->
let th1 = NUM_ADD_RULE ntm one_tm in
let mtm = rand(concl th1) in
let th2 = NUM_SQUARE_RULE mtm in
let ptm = rand(concl th2) in
let atm = subbn
(mk_comb(BIT0_tm,mk_comb(BIT0_tm,ptm))) mtm in
let th3 = NUM_ADD_RULE mtm atm in
let th4 = INST
[atm,a_tm; mtm,m_tm; ntm,n_tm; ptm,p_tm] pth_qstep in
QUICK_PROVE_HYP (CONJ th1 (CONJ th2 th3)) th4
| _ ->
let th1 = GEN_NUM_SQUARE_RULE (w - 1) z mtm in
let ntm = rand(concl th1) in
let th2 = EQ_MP (INST [mtm,m_tm; ntm,n_tm] pth_odd) th1 in
(match concl th2 with
Comb(_,Comb(_,Comb(_,Comb(Comb(_,ptm),qtm)))) ->
let th3 = NUM_ADD_RULE ptm qtm in
TRANS th2 (AP_BIT1 (AP_BIT0 th3)))
else if w + z < 800 then
let k2 = (w + z) / 2 in
let th1 = NUM_SHIFT_CONV k2 tm in
let Comb(Comb(_,ltm),Comb(Comb(_,ptm),htm)) = rand(concl th1) in
let th2 = NUM_ADD_RULE htm ltm in
let mtm = rand(concl th2) in
let th3 = NUM_SQUARE_RULE htm
and th4 = NUM_SQUARE_RULE ltm
and th5 = NUM_SQUARE_RULE mtm in
let atm = rand(concl th3)
and ctm = rand(concl th4)
and dtm = rand(concl th5) in
let th6 = NUM_ADD_RULE atm ctm in
let etm = rand(concl th6) in
let btm = subbn dtm etm in
let th7 = NUM_ADD_RULE etm btm in
let dtm = rand(concl th7) in
let th8 = INST [atm,a_tm; btm,b_tm; ctm,c_tm; dtm,d_tm; etm,e_tm;
htm,h_tm; ltm,l_tm; mtm,m_tm; tm,n_tm; ptm,p_tm]
pth_rec in
let th9 = QUICK_PROVE_HYP (end_itlist CONJ
[th1;th2;th3;th4;th5;th6;th7]) th8 in
CONV_RULE(RAND_CONV(RAND_CONV(RAND_CONV NUM_UNSHIFT_CONV) THENC
NUM_UNSHIFT_CONV)) th9
else
let k3 = (w + z) / 3 in
let th0 = (NUM_SHIFT_CONV k3 THENC
RAND_CONV(RAND_CONV(NUM_SHIFT_CONV k3))) tm in
let Comb(Comb(_,ltm),Comb(Comb(_,ptm),
Comb(Comb(_,mtm),Comb(Comb(_,_),htm)))) = rand(concl th0) in
let th1 = NUM_SQUARE_RULE htm
and th2 = NUM_SQUARE_RULE ltm in
let atm = rand(concl th2) and etm = rand(concl th1) in
let lnum = dest_raw_numeral ltm
and mnum = dest_raw_numeral mtm
and hnum = dest_raw_numeral htm in
let btm = rand(mk_numeral(num_2 */ lnum */ mnum))
and ctm = rand(mk_numeral(mnum */ mnum +/ num_2 */ lnum */ hnum))
and dtm = rand(mk_numeral(num_2 */ hnum */ mnum)) in
let th = INST
[atm,a_tm; btm,b_tm; ctm,c_tm; dtm,d_tm; etm,e_tm;
htm,h_tm; mtm,m_tm; ltm,l_tm; ptm,p_tm] pth_toom3 in
let th' = CONV_RULE
(BINOP2_CONV
(RAND_CONV(RAND_CONV
(BINOP2_CONV TOOM3_CONV (BINOP2_CONV TOOM3_CONV TOOM3_CONV))))
TOOM3_CONV) th in
let [tm3;tm4;tm5] = conjuncts(rand(rand(lhand(concl th')))) in
let th3 = NUM_SQUARE_RULE (lhand(lhand tm3))
and th4 = NUM_SQUARE_RULE (lhand(lhand tm4))
and th5 = NUM_SQUARE_RULE (lhand(lhand tm5)) in
MP th' (end_itlist CONJ [th1;th2;th3;th4;th5])
and NUM_SQUARE_RULE tm =
let w,z = bitcounts tm in GEN_NUM_SQUARE_RULE w z tm in
NUM_SQUARE_RULE in
let NUM_MUL_RULE =
let QUICK_PROVE_HYP ath bth =
EQ_MP (DEDUCT_ANTISYM_RULE ath bth) ath
and pth_0l,pth_0r = (CONJ_PAIR o STANDARDIZE o prove)
(`_0 * n = _0 /\ m * _0 = _0`,
MESON_TAC[NUMERAL; MULT_CLAUSES])
and pth_1l,pth_1r = (CONJ_PAIR o STANDARDIZE o prove)
(`(BIT1 _0) * n = n /\ m * (BIT1 _0) = m`,
MESON_TAC[NUMERAL; MULT_CLAUSES])
and pth_evenl,pth_evenr = (CONJ_PAIR o STANDARDIZE o prove)
(`(m * n = p <=> (BIT0 m) * n = BIT0 p) /\
(m * n = p <=> m * BIT0 n = BIT0 p)`,
REWRITE_TAC[BIT0] THEN REWRITE_TAC[GSYM MULT_2] THEN
REWRITE_TAC[AC MULT_AC `m * 2 * n = 2 * m * n`] THEN
REWRITE_TAC[GSYM MULT_ASSOC; EQ_MULT_LCANCEL; ARITH_EQ])
and pth_oddl,pth_oddr = (CONJ_PAIR o STANDARDIZE o prove)