-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathofficehome.py
72 lines (57 loc) · 2.55 KB
/
officehome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function
from PIL import Image
import os
import os.path
import numpy as np
import torch.utils.data as data
class OfficeHome(data.Dataset):
def __init__(self, root, imbalanced, domain, train=True, transform=None, from_file=False):
self.train = train
self.transform = transform
if not from_file:
data = []
labels = []
if imbalanced:
if imbalanced == "_RS" and self.train:
file_path = '../SSISFDA/data/Imbalanced/officeHome_RSUT/%s%s.txt' % (domain, imbalanced)
elif imbalanced == "_RS" and not self.train:
file_path = '../SSISFDA/data/Imbalanced/officeHome_RSUT/%s_UT.txt' % (domain)
elif imbalanced == "_UT" and self.train:
file_path = '../SSISFDA/data/Imbalanced/officeHome_RSUT/%s%s.txt' % (domain, imbalanced)
elif imbalanced == "_UT" and not self.train:
file_path = '../SSISFDA/data/Imbalanced/officeHome_RSUT/%s_RS.txt' % (domain)
else:
print("ERROR: Unknown configuration %s %s" % (domain, imbalanced))
else:
file_path = '../SSISFDA/data/Imbalanced/officeHome/%s.txt' % (domain)
#print(file_path);exit()
with open(file_path,'r') as f:
lines = f.readlines()
for line in lines:
path, label = line.split(" ")
sample = os.path.join(root, "/".join(path.split("/")[-3:]))
data.append(sample)
labels.append(int(label))
np.random.seed(1234)
idx = np.random.permutation(len(data))
self.data = np.array(data)[idx]
self.labels = np.array(labels)[idx]
else:
self.data = np.load(os.path.join(root, domain+"_imgs.npy"))
self.labels = np.load(os.path.join(root, domain+"_labels.npy"))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.open(img)
if self.transform is not None:
img = self.transform(img)
return img, target, index
def __len__(self):
return len(self.data)