forked from lanl/CLAMR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
clamr_gpucheck.cpp
724 lines (594 loc) · 28.9 KB
/
clamr_gpucheck.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*
* Copyright (c) 2011-2019, Triad National Security, LLC.
* All rights Reserved.
*
* CLAMR -- LA-CC-11-094
*
* Copyright 2011-2019. Triad National Security, LLC. This software was produced
* under U.S. Government contract 89233218CNA000001 for Los Alamos National
* Laboratory (LANL), which is operated by Triad National Security, LLC
* for the U.S. Department of Energy. The U.S. Government has rights to use,
* reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
* TRIAD NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
* ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified
* to produce derivative works, such modified software should be clearly marked,
* so as not to confuse it with the version available from LANL.
*
* Additionally, redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Triad National Security, LLC, Los Alamos
* National Laboratory, LANL, the U.S. Government, nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE TRIAD NATIONAL SECURITY, LLC AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TRIAD NATIONAL
* SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* CLAMR -- LA-CC-11-094
* This research code is being developed as part of the
* 2011 X Division Summer Workshop for the express purpose
* of a collaborative code for development of ideas in
* the implementation of AMR codes for Exascale platforms
*
* AMR implementation of the Wave code previously developed
* as a demonstration code for regular grids on Exascale platforms
* as part of the Supercomputing Challenge and Los Alamos
* National Laboratory
*
* Authors: Bob Robey XCP-2 [email protected]
* Neal Davis [email protected], [email protected]
* David Nicholaeff [email protected], [email protected]
* Dennis Trujillo [email protected], [email protected]
*
*/
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <vector>
#include "graphics/display.h"
#include "graphics/graphics.h"
#include "ezcl/ezcl.h"
#include "input.h"
#include "mesh/mesh.h"
#include "mesh/partition.h"
#include "state.h"
#include "timer/timer.h"
#include "memstats/memstats.h"
#include "PowerParser/PowerParser.hh"
using namespace PP;
#ifndef DEBUG
#define DEBUG 0
#endif
// Sync is to reduce numerical drift between cpu and gpu
#define DO_SYNC
static int do_comparison_calc = 1;
static int do_cpu_calc = 1;
static int do_gpu_calc = 1;
#ifdef DO_SYNC
static int do_sync = 1;
#else
static int do_sync = 0;
#endif
static int do_gpu_sync = 0;
typedef unsigned int uint;
static bool do_display_graphics = false;
#ifdef HAVE_GRAPHICS
static double circle_radius=-1.0;
#ifdef FULL_PRECISION
void (*set_display_cell_coordinates)(double *, double *, double *, double *) = &set_display_cell_coordinates_double;
void (*set_display_cell_data)(double *) = &set_display_cell_data_double;
#else
void (*set_display_cell_coordinates)(float *, float *, float *, float *) = &set_display_cell_coordinates_float;
void (*set_display_cell_data)(float *) = &set_display_cell_data_float;
#endif
#endif
static int view_mode = 0;
#ifdef FULL_PRECISION
#define SUM_ERROR 2.0e-16
void (*set_graphics_cell_coordinates)(double *, double *, double *, double *) = &set_graphics_cell_coordinates_double;
void (*set_graphics_cell_data)(double *) = &set_graphics_cell_data_double;
#else
#define SUM_ERROR 1.0e-8
void (*set_graphics_cell_coordinates)(float *, float *, float *, float *) = &set_graphics_cell_coordinates_float;
void (*set_graphics_cell_data)(float *) = &set_graphics_cell_data_float;
#endif
bool restart, // Flag to start from a back up file; init in input.cpp::parseInput().
verbose, // Flag for verbose command-line output; init in input.cpp::parseInput().
localStencil, // Flag for use of local stencil; init in input.cpp::parseInput().
face_based, // Flag for face-based finite difference;
outline; // Flag for drawing outlines of cells; init in input.cpp::parseInput().
int outputInterval, // Periodicity of output; init in input.cpp::parseInput().
crux_type, // Type of checkpoint/restart -- CRUX_NONE, CRUX_IN_MEMORY, CRUX_DISK;
// init in input.cpp::parseInput().
enhanced_precision_sum,// Flag for enhanced precision sum (default true); init in input.cpp::parseInput().
lttrace_on, // Flag to turn on logical time trace package;
do_quo_setup, // Flag to turn on quo dynamic scheduling policies package;
levmx, // Maximum number of refinement levels; init in input.cpp::parseInput().
nx, // x-resolution of coarse grid; init in input.cpp::parseInput().
ny, // y-resolution of coarse grid; init in input.cpp::parseInput().
niter, // Maximum iterations; init in input.cpp::parseInput().
graphic_outputInterval, // Periodicity of graphic output that is saved; init in input.cpp::parseInput()
checkpoint_outputInterval, // Periodicity of checkpoint output that is saved; init in input.cpp::parseInput()
num_of_rollback_states,// Maximum number of rollback states to maintain; init in input.cpp::parseInput()
output_cuts, // Flag for outputting file of slice along y-axis; init in input.cpp::parseInput().
backup_file_num,// Backup file number to restart simulation from; init in input.cpp::parseInput()
numpe, //
ndim = 2, // Dimensionality of problem (2 or 3).
ndigits,
nbits;
double upper_mass_diff_percentage; // Flag for the allowed pecentage difference to the total
// mass per output intervals; init in input.cpp::parseInput().
char *restart_file;
static int it = 0;
enum partition_method initial_order, // Initial order of mesh.
cycle_reorder; // Order of mesh every cycle.
static Mesh *mesh; // Object containing mesh information
static State *state; // Object containing state information corresponding to mesh
static PowerParser *parse; // Object containing input file parsing
static real_t circ_radius = 0.0;
static int next_graphics_cycle = 0;
// Set up timing information.
static struct timespec tstart, tstart_cpu, tstart_partmeas;
//static struct tstart_check;
static cl_event start_write_event, end_write_event;
static double H_sum_initial = 0.0;
static double cpu_time_graphics = 0.0;
static double cpu_time_calcs = 0.0;
static double cpu_time_partmeas = 0.0;
//static double cpu_time_check = 0.0;
static int ncycle = 0;
static double simTime = 0.0;
static double deltaT = 0.0;
int main(int argc, char **argv) {
int ierr;
// Needed for code to compile correctly on the Mac
int mype=0;
int numpe=-1;
parse = new PowerParser();
// Process command-line arguments, if any.
parseInput(argc, argv);
struct timespec tstart_setup;
cpu_timer_start(&tstart_setup);
numpe = 16;
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_GPU);
if (ierr == EZCL_NODEVICE) {
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_ACCELERATOR);
}
if (ierr == EZCL_NODEVICE) {
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_CPU);
}
if (ierr != EZCL_SUCCESS) {
printf("No opencl device available -- aborting\n");
exit(-1);
}
circ_radius = 6.0;
// Scale the circle appropriately for the mesh size.
circ_radius = circ_radius * (real_t) nx / 128.0;
int boundary = 1;
int parallel_in = 0;
double deltax_in = 1.0;
double deltay_in = 1.0;
mesh = new Mesh(nx, ny, levmx, ndim, deltax_in, deltay_in, boundary, parallel_in, do_gpu_calc);
if (DEBUG) {
//if (mype == 0) mesh->print();
char filename[10];
sprintf(filename,"out%1d",mype);
mesh->fp=fopen(filename,"w");
//mesh->print_local();
}
mesh->init(nx, ny, circ_radius, initial_order, do_gpu_calc);
size_t &ncells = mesh->ncells;
state = new State(mesh);
state->init(do_gpu_calc);
mesh->proc.resize(ncells);
mesh->calc_distribution(numpe);
state->fill_circle(circ_radius, 80.0, 10.0);
if (graphic_outputInterval > niter) next_graphics_cycle = graphic_outputInterval;
cl_mem &dev_celltype = mesh->dev_celltype;
cl_mem &dev_i = mesh->dev_i;
cl_mem &dev_j = mesh->dev_j;
cl_mem &dev_level = mesh->dev_level;
cl_mem &dev_H = state->dev_H;
cl_mem &dev_U = state->dev_U;
cl_mem &dev_V = state->dev_V;
state_t *H = state->H;
state_t *U = state->U;
state_t *V = state->V;
state->allocate_device_memory(ncells);
size_t one = 1;
state->dev_deltaT = ezcl_malloc(NULL, const_cast<char *>("dev_deltaT"), &one, sizeof(cl_real_t), CL_MEM_READ_WRITE, 0);
size_t mem_request = (int)((float)ncells*mesh->mem_factor);
dev_celltype = ezcl_malloc(NULL, const_cast<char *>("dev_celltype"), &mem_request, sizeof(cl_char_t), CL_MEM_READ_ONLY, 0);
dev_i = ezcl_malloc(NULL, const_cast<char *>("dev_i"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_j = ezcl_malloc(NULL, const_cast<char *>("dev_j"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_level = ezcl_malloc(NULL, const_cast<char *>("dev_level"), &mem_request, sizeof(cl_uchar_t), CL_MEM_READ_ONLY, 0);
cl_command_queue command_queue = ezcl_get_command_queue();
ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_char_t), &mesh->celltype[0], &start_write_event);
ezcl_enqueue_write_buffer(command_queue, dev_i, CL_FALSE, 0, ncells*sizeof(cl_int), &mesh->i[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_j, CL_FALSE, 0, ncells*sizeof(cl_int), &mesh->j[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_level, CL_FALSE, 0, ncells*sizeof(cl_uchar_t), &mesh->level[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), &H[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), &U[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_V, CL_TRUE, 0, ncells*sizeof(cl_state_t), &V[0], &end_write_event );
state->gpu_timers[STATE_TIMER_WRITE] += ezcl_timer_calc(&start_write_event, &end_write_event);
if (ezcl_get_compute_device() == COMPUTE_DEVICE_AMD) enhanced_precision_sum = false;
// Kahan-type enhanced precision sum implementation.
double H_sum = state->mass_sum(enhanced_precision_sum);
printf ("Mass of initialized cells equal to %14.12lg\n", H_sum);
H_sum_initial = H_sum;
double cpu_time_main_setup = cpu_timer_stop(tstart_setup);
mesh->parallel_output("CPU: setup time time was",cpu_time_main_setup, 0, "s");
long long mem_used = memstats_memused();
if (mem_used > 0) {
mesh->parallel_output("Memory used in startup ",mem_used, 0, "kB");
mesh->parallel_output("Memory peak in startup ",memstats_mempeak(), 0, "kB");
mesh->parallel_output("Memory free at startup ",memstats_memfree(), 0, "kB");
mesh->parallel_output("Memory available at startup ",memstats_memtotal(), 0, "kB");
}
printf("Iteration 0 timestep n/a Sim Time 0.0 cells %ld Mass Sum %14.12lg\n", ncells, H_sum);
for (int i = 0; i < MESH_COUNTER_SIZE; i++){
mesh->cpu_counters[i]=0;
}
for (int i = 0; i < MESH_TIMER_SIZE; i++){
mesh->cpu_timers[i]=0.0;
}
cpu_timer_start(&tstart_cpu);
// Set up grid.
#ifdef GRAPHICS_OUTPUT
mesh->write_grid(n);
#endif
#ifdef HAVE_GRAPHICS
do_display_graphics = true;
set_display_mysize(ncells);
set_display_window((float)mesh->xmin, (float)mesh->xmax,
(float)mesh->ymin, (float)mesh->ymax);
set_display_outline((int)outline);
set_display_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
set_display_cell_data(&state->H[0]);
set_display_cell_proc(&mesh->proc[0]);
set_display_viewmode(view_mode);
#endif
if (ncycle == next_graphics_cycle){
set_graphics_outline(outline);
set_graphics_mysize(ncells);
set_graphics_window((float)mesh->xmin, (float)mesh->xmax,
(float)mesh->ymin, (float)mesh->ymax);
set_graphics_outline((int)outline);
set_graphics_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
#ifndef HALF_PRECISION
set_graphics_cell_data(&state->H[0]);
#endif
set_graphics_cell_proc(&mesh->proc[0]);
set_graphics_viewmode(view_mode);
init_graphics_output();
set_graphics_cell_proc(&mesh->proc[0]);
write_graphics_info(0,0,0.0,0,0);
next_graphics_cycle += graphic_outputInterval;
}
#ifdef HAVE_GRAPHICS
set_display_circle_radius(circle_radius);
init_display(&argc, argv, "Shallow Water");
draw_scene();
//if (verbose) sleep(5);
sleep(2);
// Clear superposition of circle on grid output.
circle_radius = -1.0;
#endif
cpu_time_graphics += cpu_timer_stop(tstart_cpu);
// Set flag to show mesh results rather than domain decomposition.
view_mode = 1;
mesh->calc_neighbors(ncells);
mesh->gpu_calc_neighbors();
cpu_timer_start(&tstart);
#ifdef HAVE_GRAPHICS
set_idle_function(&do_calc);
start_main_loop();
#else
for (it = 0; it < 10000000; it++) {
do_calc();
}
#endif
return 0;
}
extern bool neighbor_remap;
extern "C" void do_calc(void)
{ double g = 9.80;
double sigma = 0.95;
int icount, jcount;
if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
do_comparison_calc = 1;
do_sync = 0;
do_gpu_sync = 1;
}
size_t ncells = mesh->ncells;
cl_mem &dev_H = state->dev_H;
cl_mem &dev_U = state->dev_U;
cl_mem &dev_V = state->dev_V;
cl_mem &dev_celltype = mesh->dev_celltype;
cl_mem &dev_i = mesh->dev_i;
cl_mem &dev_j = mesh->dev_j;
cl_mem &dev_level = mesh->dev_level;
cl_mem &dev_mpot = state->dev_mpot;
vector<char_t> mpot;
size_t old_ncells = ncells;
size_t new_ncells = 0;
size_t new_ncells_gpu = 0;
double H_sum = -1.0;
cl_command_queue command_queue = ezcl_get_command_queue();
// Main loop.
cpu_timer_start(&tstart_cpu);
for (int nburst = 0; nburst < outputInterval && ncycle < niter; nburst++, ncycle++) {
// To reduce drift in solution
if (do_sync) {
ezcl_enqueue_read_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->H[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->U[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_V, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&state->V[0], NULL);
}
mpot.resize(ncells);
new_ncells = state->calc_refine_potential(mpot, icount, jcount);
//printf("DEBUG cpu icount %d jcount %d new_ncells %d\n",icount,jcount,new_ncells);
new_ncells_gpu = state->gpu_calc_refine_potential(icount, jcount);
//printf("DEBUG gpu icount %d jcount %d new_ncells %d\n",icount,jcount,new_ncells);
if (do_comparison_calc) {
if (new_ncells != new_ncells_gpu) {
printf("ERROR -- new_ncells cpu %lu not equal to new_ncells gpu %lu\n",new_ncells,new_ncells_gpu);
exit(0);
}
// Need to compare dev_mpot to mpot
if (dev_mpot) {
mesh->compare_mpot_gpu_global_to_cpu_global(&mpot[0], dev_mpot);
}
}
// Sync up cpu array with gpu version to reduce differences due to minor numerical differences
// otherwise cell count will diverge causing code problems and crashes
if (dev_mpot) {
if (do_sync) {
ezcl_enqueue_read_buffer(command_queue, dev_mpot, CL_TRUE, 0, ncells*sizeof(cl_char_t), &mpot[0], NULL);
}
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, dev_mpot, CL_TRUE, 0, ncells*sizeof(cl_char_t), &mpot[0], NULL);
}
}
if (do_comparison_calc) {
// This compares ioffset for each block in the calculation
if (dev_mpot) {
mesh->compare_ioffset_gpu_global_to_cpu_global(old_ncells, &mpot[0]);
}
}
if (do_gpu_sync) {
if (dev_mpot) {
size_t local_work_size = MIN(old_ncells, TILE_SIZE);
size_t global_work_size = ((old_ncells+local_work_size - 1) /local_work_size) * local_work_size;
//size_t block_size = (ncells + TILE_SIZE - 1) / TILE_SIZE; // For on-device global reduction kernel.
size_t block_size = global_work_size/local_work_size;
vector<int> ioffset(block_size);
int mtotal = 0;
for (int ig=0; ig<(int)(old_ncells+TILE_SIZE-1)/TILE_SIZE; ig++){
int mcount = 0;
for (int ic=ig*TILE_SIZE; ic<(ig+1)*TILE_SIZE; ic++){
if (ic >= (int)old_ncells) break;
if (mesh->celltype[ic] == REAL_CELL) {
mcount += mpot[ic] ? 4 : 1;
} else {
mcount += mpot[ic] ? 2 : 1;
}
}
ioffset[ig] = mtotal;
mtotal += mcount;
}
ezcl_enqueue_write_buffer(command_queue, mesh->dev_ioffset, CL_TRUE, 0, block_size*sizeof(cl_int), &ioffset[0], NULL);
}
}
if (do_comparison_calc) {
new_ncells = new_ncells_gpu;
}
//int add_ncells = new_ncells - old_ncells;
state->rezone_all(icount, jcount, mpot);
// Clear does not delete mpot, so have to swap with an empty vector to get
// it to delete the mpot memory. This is all to avoid valgrind from showing
// it as a reachable memory leak
//mpot.clear();
vector<char_t>().swap(mpot);
// Resize the mesh, inserting cells where refinement is necessary.
if (state->dev_mpot) state->gpu_rezone_all(icount, jcount, localStencil);
ncells = new_ncells;
mesh->ncells = new_ncells;
if (neighbor_remap && do_comparison_calc) {
mesh->compare_neighbors_gpu_global_to_cpu_global();
}
//ezcl_device_memory_remove(dev_ioffset);
if (do_comparison_calc) {
state->compare_state_gpu_global_to_cpu_global("rezone all",ncycle,ncells);
mesh->compare_indices_gpu_global_to_cpu_global();
}
//if (do_gpu_calc) {
// int bcount = mesh->gpu_count_BCs();
//}
mesh->proc.resize(ncells);
if (icount || jcount) {
if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
mesh->calc_spatial_coordinates(0);
}
vector<int> index(ncells);
mesh->partition_cells(numpe, index, cycle_reorder);
//state->state_reorder(index);
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_char_t), (void *)&mesh->celltype[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_i, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh->i[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_j, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh->j[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_level, CL_TRUE, 0, ncells*sizeof(cl_uchar_t), (void *)&mesh->level[0], NULL);
}
}
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->H[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state->U[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_V, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&state->V[0], NULL);
}
// Define basic domain decomposition parameters for GPU.
old_ncells = ncells;
// Calculate the real time step for the current discrete time step.
double deltaT_cpu = state->set_timestep(g, sigma);
double deltaT_gpu = state->gpu_set_timestep(sigma);
// Compare time step values and pass deltaT in to the kernel.
if (do_comparison_calc)
{ if (fabs(deltaT_gpu - deltaT_cpu) > .000001)
{ printf("Error with deltaT calc --- cpu %lf gpu %lf\n",deltaT_cpu,deltaT_gpu); } }
deltaT = (do_gpu_calc) ? deltaT_gpu : deltaT_cpu;
simTime += deltaT;
mesh->calc_neighbors(ncells);
mesh->gpu_calc_neighbors();
if (do_comparison_calc) {
mesh->compare_neighbors_gpu_global_to_cpu_global();
}
cpu_timer_start(&tstart_partmeas);
mesh->partition_measure();
cpu_time_partmeas += cpu_timer_stop(tstart_partmeas);
// Currently not working -- may need to be earlier?
//if (do_cpu_calc && ! mesh->have_boundary) {
// state->add_boundary_cells(mesh);
//}
// Apply BCs is currently done as first part of gpu_finite_difference and so comparison won't work here
// Execute main kernel
state->calc_finite_difference(deltaT);
state->gpu_calc_finite_difference(deltaT);
if (do_comparison_calc) {
// Need to compare dev_H to H, etc
state->compare_state_gpu_global_to_cpu_global("finite difference",ncycle,ncells);
}
// Size of arrays gets reduced to just the real cells in this call for have_boundary = 0
state->remove_boundary_cells();
} // End burst loop
cpu_time_calcs += cpu_timer_stop(tstart_cpu);
H_sum = state->mass_sum(enhanced_precision_sum);
#ifdef __APPLE__
if (isnan(H_sum)) {
#else
if (std::isnan(H_sum)) {
#endif
printf("Got a NAN on cycle %d\n",ncycle);
exit(-1);
}
if (do_comparison_calc) {
double total_mass = state->gpu_mass_sum(enhanced_precision_sum);
if (fabs(total_mass - H_sum) > CONSERVATION_EPS) printf("Error: mass sum gpu %f cpu %f\n", total_mass, H_sum);/***/
}
printf("Iteration %3d timestep %lf Sim Time %lf cells %ld Mass Sum %14.12lg Mass Change %12.6lg\n",
ncycle, deltaT, simTime, ncells, H_sum, H_sum - H_sum_initial);
cpu_timer_start(&tstart_cpu);
if(do_display_graphics || ncycle == next_graphics_cycle){
if (do_cpu_calc){
mesh->calc_spatial_coordinates(0);
}
if (do_gpu_calc){
cl_mem dev_x = ezcl_malloc(NULL, const_cast<char *>("dev_x"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dx = ezcl_malloc(NULL, const_cast<char *>("dev_dx"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_y = ezcl_malloc(NULL, const_cast<char *>("dev_y"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dy = ezcl_malloc(NULL, const_cast<char *>("dev_dy"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
mesh->gpu_calc_spatial_coordinates(dev_x, dev_dx, dev_y, dev_dy);
if (do_comparison_calc){
#ifdef FULL_PRECISION
mesh->compare_coordinates_gpu_global_to_cpu_global_double(dev_x, dev_dx, dev_y, dev_dy, dev_H, &state->H[0]);
#elif HALF_PRECISION
mesh->compare_coordinates_gpu_global_to_cpu_global_half(dev_x, dev_dx, dev_y, dev_dy, dev_H, &state->H[0]);
#else
mesh->compare_coordinates_gpu_global_to_cpu_global_float(dev_x, dev_dx, dev_y, dev_dy, dev_H, &state->H[0]);
#endif
}
ezcl_device_memory_remove(dev_x);
ezcl_device_memory_remove(dev_dx);
ezcl_device_memory_remove(dev_y);
ezcl_device_memory_remove(dev_dy);
}
}
if(ncycle == next_graphics_cycle){
set_graphics_mysize(ncells);
set_graphics_viewmode(view_mode);
set_graphics_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
#ifndef HALF_PRECISION
set_graphics_cell_data(&state->H[0]);
#endif
set_graphics_cell_proc(&mesh->proc[0]);
write_graphics_info(ncycle/graphic_outputInterval,ncycle,simTime,0,0);
next_graphics_cycle += graphic_outputInterval;
}
#ifdef HAVE_GRAPHICS
set_display_mysize(ncells);
set_display_viewmode(view_mode);
set_display_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
set_display_cell_data(&state->H[0]);
set_display_cell_proc(&mesh->proc[0]);
set_display_circle_radius(circle_radius);
draw_scene();
#endif
cpu_time_graphics += cpu_timer_stop(tstart_cpu);
// Output final results and timing information.
if (ncycle >= niter) {
//free_display();
if(graphic_outputInterval < niter){
cpu_timer_start(&tstart_cpu);
mesh->calc_spatial_coordinates(0);
#ifdef HAVE_GRAPHICS
set_display_mysize(ncells);
set_display_viewmode(view_mode);
set_display_cell_coordinates(&mesh->x[0], &mesh->dx[0], &mesh->y[0], &mesh->dy[0]);
set_display_cell_data(&state->H[0]);
set_display_cell_proc(&mesh->proc[0]);
#endif
write_graphics_info(ncycle/graphic_outputInterval,ncycle,simTime,0,0);
next_graphics_cycle += graphic_outputInterval;
cpu_time_graphics += cpu_timer_stop(tstart_cpu);
}
// Get overall program timing.
double elapsed_time = cpu_timer_stop(tstart);
long long mem_used = memstats_memused();
if (mem_used > 0) {
printf("Memory used %lld kB\n",mem_used);
printf("Memory peak %lld kB\n",memstats_mempeak());
printf("Memory free %lld kB\n",memstats_memfree());
printf("Memory available %lld kB\n",memstats_memtotal());
}
state->output_timing_info(do_cpu_calc, do_gpu_calc, elapsed_time);
mesh->parallel_output("CPU: calc incl part meas time was",cpu_time_calcs, 0, "s");
mesh->parallel_output("CPU: calculation only time was",cpu_time_calcs-cpu_time_partmeas, 0, "s");
mesh->parallel_output("CPU: partition measure time was",cpu_time_partmeas, 0, "s");
mesh->parallel_output("CPU: graphics time was",cpu_time_graphics, 0, "s");
//mesh->parallel_output("CPU: check time was",cpu_time_check, 0, "s");
mesh->print_partition_measure();
mesh->print_calc_neighbor_type();
mesh->print_partition_type();
printf("CPU: rezone frequency \t %8.4f\tpercent\n", (double)mesh->get_cpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("CPU: calc neigh frequency \t %8.4f\tpercent\n", (double)mesh->get_cpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
if (mesh->get_cpu_counter(MESH_COUNTER_REZONE) > 0) {
printf("CPU: refine_smooth_iter per rezone \t %8.4f\t\n", (double)mesh->get_cpu_counter(MESH_COUNTER_REFINE_SMOOTH)/(double)mesh->get_cpu_counter(MESH_COUNTER_REZONE) );
}
printf("GPU: rezone frequency \t %8.4f\tpercent\n", (double)mesh->get_gpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("GPU: calc neigh frequency \t %8.4f\tpercent\n", (double)mesh->get_gpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
if (mesh->get_gpu_counter(MESH_COUNTER_REZONE) > 0) {
printf("GPU: refine_smooth_iter per rezone \t %8.4f\t\n", (double)mesh->get_gpu_counter(MESH_COUNTER_REFINE_SMOOTH)/(double)mesh->get_gpu_counter(MESH_COUNTER_REZONE) );
}
mesh->terminate();
state->terminate();
ezcl_terminate();
terminate_graphics_output();
delete state;
ezcl_mem_walk_all();
exit(0);
} // Complete final output.
}