forked from lanl/CLAMR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
clamr_checkall.cpp
954 lines (784 loc) · 44 KB
/
clamr_checkall.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/*
* Copyright (c) 2011-2019, Triad National Security, LLC.
* All rights Reserved.
*
* CLAMR -- LA-CC-11-094
*
* Copyright 2011-2019. Triad National Security, LLC. This software was produced
* under U.S. Government contract 89233218CNA000001 for Los Alamos National
* Laboratory (LANL), which is operated by Triad National Security, LLC
* for the U.S. Department of Energy. The U.S. Government has rights to use,
* reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR
* TRIAD NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
* ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified
* to produce derivative works, such modified software should be clearly marked,
* so as not to confuse it with the version available from LANL.
*
* Additionally, redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Triad National Security, LLC, Los Alamos
* National Laboratory, LANL, the U.S. Government, nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE TRIAD NATIONAL SECURITY, LLC AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TRIAD NATIONAL
* SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* CLAMR -- LA-CC-11-094
* This research code is being developed as part of the
* 2011 X Division Summer Workshop for the express purpose
* of a collaborative code for development of ideas in
* the implementation of AMR codes for Exascale platforms
*
* AMR implementation of the Wave code previously developed
* as a demonstration code for regular grids on Exascale platforms
* as part of the Supercomputing Challenge and Los Alamos
* National Laboratory
*
* Authors: Bob Robey XCP-2 [email protected]
* Neal Davis [email protected], [email protected]
* David Nicholaeff [email protected], [email protected]
* Dennis Trujillo [email protected], [email protected]
*
*/
#include "ezcl/ezcl.h"
#include "input.h"
#include "mesh/mesh.h"
#include "mesh/partition.h"
#include "state.h"
#include "graphics/display.h"
#include "timer/timer.h"
#include "l7/l7.h"
#ifdef HAVE_MPI
#include <mpi.h>
#endif
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <vector>
#ifndef DEBUG
#define DEBUG 0
#endif
// Sync is to reduce numerical drift between cpu and gpu
#define DO_SYNC
#define DO_COMPARISON
//#define DO_CPU
//#define DO_GPU
//TODO: command-line option for OpenGL?
#ifdef DO_COMPARISON
#define DO_CPU
#define DO_GPU
static int do_comparison_calc = 1;
#else
static int do_comparison_calc = 0;
#endif
#ifdef DO_CPU
static int do_cpu_calc = 1;
#else
static int do_cpu_calc = 0;
#endif
#ifdef DO_GPU
static int do_gpu_calc = 1;
#else
static int do_gpu_calc = 0;
#endif
#ifdef DO_SYNC
static int do_sync = 1;
#else
static int do_sync = 0;
#endif
static int do_gpu_sync = 0;
typedef unsigned int uint;
#ifdef HAVE_GRAPHICS
static double circle_radius=-1.0;
static int view_mode = 0;
#ifdef FULL_PRECISION
void (*set_display_cell_coordinates)(double *, double *, double *, double *) = &set_display_cell_coordinates_double;
void (*set_display_cell_data)(double *) = &set_display_cell_data_double;
#else
void (*set_display_cell_coordinates)(float *, float *, float *, float *) = &set_display_cell_coordinates_float;
void (*set_display_cell_data)(float *) = &set_display_cell_data_float;
#endif
#endif
bool restart, // Flag to start from a back up file; init in input.cpp::parseInput().
verbose, // Flag for verbose command-line output; init in input.cpp::parseInput().
localStencil, // Flag for use of local stencil; init in input.cpp::parseInput().
face_based, // Flag for face-based finite difference;
outline; // Flag for drawing outlines of cells; init in input.cpp::parseInput().
int outputInterval, // Periodicity of output; init in input.cpp::parseInput().
crux_type, // Type of checkpoint/restart -- CRUX_NONE, CRUX_IN_MEMORY, CRUX_DISK;
// init in input.cpp::parseInput().
enhanced_precision_sum,// Flag for enhanced precision sum (default true); init in input.cpp::parseInput().
lttrace_on, // Flag to turn on logical time trace package;
do_quo_setup, // Flag to turn on quo dynamic scheduling policies package;
levmx, // Maximum number of refinement levels; init in input.cpp::parseInput().
nx, // x-resolution of coarse grid; init in input.cpp::parseInput().
ny, // y-resolution of coarse grid; init in input.cpp::parseInput().
niter, // Maximum time step; init in input.cpp::parseInput().
graphic_outputInterval, // Periocity of graphic output that is saved; init in input.cpp::parseInput()
checkpoint_outputInterval, // Periodicity of checkpoint output that is saved; init in input.cpp::parseInput()
num_of_rollback_states,// Maximum number of rollback states to maintain; init in input.cpp::parseInput()
output_cuts, // Flag for outputting file of slice along y-axis; init in input.cpp::parseInput().
backup_file_num,// Backup file number to restart simulation from; init in input.cpp::parseInput()
numpe, //
ndim = 2, // Dimensionality of problem (2 or 3).
ndigits,
nbits;
double upper_mass_diff_percentage; // Flag for the allowed pecentage difference to the total
// mass per output intervals; init in input.cpp::parseInput().
char *restart_file;
enum partition_method initial_order, // Initial order of mesh.
cycle_reorder; // Order of mesh every cycle.
static Mesh *mesh_global; // Object containing mesh information; init in grid.cpp::main().
static State *state_global; // Object containing state information corresponding to mesh; init in grid.cpp::main().
static Mesh *mesh_local; // Object containing mesh information; init in grid.cpp::main().
static State *state_local; // Object containing state information corresponding to mesh; init in grid.cpp::main().
// Set up timing information.
static struct timespec tstart;
static cl_event start_write_event, end_write_event;
static double H_sum_initial = 0.0;
static long gpu_time_graphics = 0;
int main(int argc, char **argv) {
int ierr;
// Process command-line arguments, if any.
int mype=0;
int numpe=0;
parseInput(argc, argv);
L7_Init(&mype, &numpe, &argc, argv, do_quo_setup, lttrace_on);
//MPI_Init(&argc, &argv);
//MPI_Comm_size(MPI_COMM_WORLD, &numpe);
//MPI_Comm_rank(MPI_COMM_WORLD, &mype);
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_GPU);
if (ierr == EZCL_NODEVICE) {
ierr = ezcl_devtype_init(CL_DEVICE_TYPE_CPU);
}
if (ierr != EZCL_SUCCESS) {
printf("No opencl device available -- aborting\n");
L7_Terminate();
exit(-1);
}
L7_Dev_Init();
real_t circ_radius = 6.0;
// Scale the circle appropriately for the mesh size.
circ_radius = circ_radius * (real_t) nx / 128.0;
int boundary = 1;
int parallel_in = 1;
double deltax_in = 1.0;
double deltay_in = 1.0;
mesh_local = new Mesh(nx, ny, levmx, ndim, deltax_in, deltay_in, boundary, parallel_in, do_gpu_calc);
if (DEBUG) {
//if (mype == 0) mesh->print();
char filename[10];
sprintf(filename,"out%1d",mype);
mesh_local->fp=fopen(filename,"w");
//mesh->print_local();
}
mesh_local->init(nx, ny, circ_radius, initial_order, do_gpu_calc);
size_t &ncells = mesh_local->ncells;
int &noffset = mesh_local->noffset;
int parallel_global_in = 0;
mesh_global = new Mesh(nx, ny, levmx, ndim, deltax_in, deltay_in, boundary, parallel_global_in, do_gpu_calc);
size_t &ncells_global = mesh_global->ncells;
MPI_Allreduce(&ncells, &ncells_global, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
state_local = new State(mesh_local);
state_local->init(do_gpu_calc);
state_global = new State(mesh_global);
state_global->allocate(mesh_global->ncells);
cl_mem &dev_corners_i_global = mesh_global->dev_corners_i;
cl_mem &dev_corners_j_global = mesh_global->dev_corners_j;
cl_mem &dev_corners_i_local = mesh_local->dev_corners_i;
cl_mem &dev_corners_j_local = mesh_local->dev_corners_j;
vector<int> &corners_i_global = mesh_global->corners_i;
vector<int> &corners_j_global = mesh_global->corners_j;
vector<int> &corners_i_local = mesh_local->corners_i;
vector<int> &corners_j_local = mesh_local->corners_j;
vector<int> &nsizes = mesh_local->nsizes;
vector<int> &ndispl = mesh_local->ndispl;
vector<spatial_t> &x_global = mesh_global->x;
vector<spatial_t> &dx_global = mesh_global->dx;
vector<spatial_t> &y_global = mesh_global->y;
vector<spatial_t> &dy_global = mesh_global->dy;
cl_mem &dev_H = state_local->dev_H;
cl_mem &dev_U = state_local->dev_U;
cl_mem &dev_V = state_local->dev_V;
cl_mem &dev_H_global = state_global->dev_H;
cl_mem &dev_U_global = state_global->dev_U;
cl_mem &dev_V_global = state_global->dev_V;
cl_mem &dev_celltype = mesh_local->dev_celltype;
cl_mem &dev_i = mesh_local->dev_i;
cl_mem &dev_j = mesh_local->dev_j;
cl_mem &dev_level = mesh_local->dev_level;
cl_mem &dev_celltype_global = mesh_global->dev_celltype;
cl_mem &dev_i_global = mesh_global->dev_i;
cl_mem &dev_j_global = mesh_global->dev_j;
cl_mem &dev_level_global = mesh_global->dev_level;
vector<int> &proc_global = mesh_global->proc;
vector<spatial_t> &x = mesh_local->x;
vector<spatial_t> &dx = mesh_local->dx;
vector<spatial_t> &y = mesh_local->y;
vector<spatial_t> &dy = mesh_local->dy;
nsizes.resize(numpe);
ndispl.resize(numpe);
MPI_Allgather(&ncells, 1, MPI_INT, &nsizes[0], 1, MPI_INT, MPI_COMM_WORLD);
ndispl[0]=0;
for (int ip=1; ip<numpe; ip++){
ndispl[ip] = ndispl[ip-1] + nsizes[ip-1];
}
noffset=0;
for (int ip=0; ip<mype; ip++){
noffset += nsizes[ip];
}
size_t corners_size = corners_i_global.size();
dev_corners_i_global = ezcl_malloc(&corners_i_global[0], const_cast<char *>("dev_corners_i_global"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
dev_corners_j_global = ezcl_malloc(&corners_j_global[0], const_cast<char *>("dev_corners_j_global"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
dev_corners_i_local = ezcl_malloc(&corners_i_local[0], const_cast<char *>("dev_corners_i_local"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
dev_corners_j_local = ezcl_malloc(&corners_j_local[0], const_cast<char *>("dev_corners_j_local"), &corners_size, sizeof(cl_int), CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 0);
// Gather level, celltype, H, U, V for global calc
mesh_global->celltype = (char_t *)mesh_global->mesh_memory.memory_malloc(ncells_global, sizeof(char_t), "celltype");
mesh_global->level = (uchar_t *)mesh_global->mesh_memory.memory_malloc(ncells_global, sizeof(uchar_t), "level");
mesh_global->i = (int *)mesh_global->mesh_memory.memory_malloc(ncells_global, sizeof(int), "i");
mesh_global->j = (int *)mesh_global->mesh_memory.memory_malloc(ncells_global, sizeof(int), "j");
proc_global.resize(ncells_global);
MPI_Allgatherv(&mesh_local->celltype[0], ncells, MPI_CHAR_T, &mesh_global->celltype[0], &nsizes[0], &ndispl[0], MPI_CHAR_T, MPI_COMM_WORLD);
MPI_Allgatherv(&mesh_local->level[0], ncells, MPI_UCHAR_T, &mesh_global->level[0], &nsizes[0], &ndispl[0], MPI_UCHAR_T, MPI_COMM_WORLD);
MPI_Allgatherv(&mesh_local->i[0], ncells, MPI_INT, &mesh_global->i[0], &nsizes[0], &ndispl[0], MPI_INT, MPI_COMM_WORLD);
MPI_Allgatherv(&mesh_local->j[0], ncells, MPI_INT, &mesh_global->j[0], &nsizes[0], &ndispl[0], MPI_INT, MPI_COMM_WORLD);
mesh_local->proc.resize(ncells);
for (uint ic=0; ic<ncells; ic++){
mesh_local->proc[ic] = mesh_local->mype;
}
MPI_Allgatherv(&mesh_local->proc[0], ncells, MPI_INT, &proc_global[0], &nsizes[0], &ndispl[0], MPI_INT, MPI_COMM_WORLD);
size_t mem_request = (int)((float)ncells*mesh_local->mem_factor);
dev_celltype = ezcl_malloc(NULL, const_cast<char *>("dev_celltype"), &mem_request, sizeof(cl_char_t), CL_MEM_READ_WRITE, 0);
dev_i = ezcl_malloc(NULL, const_cast<char *>("dev_i"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_j = ezcl_malloc(NULL, const_cast<char *>("dev_j"), &mem_request, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_level = ezcl_malloc(NULL, const_cast<char *>("dev_level"), &mem_request, sizeof(cl_uchar_t), CL_MEM_READ_WRITE, 0);
state_local->resize(ncells);
state_global->resize(ncells_global);
x_global.resize(ncells_global);
dx_global.resize(ncells_global);
y_global.resize(ncells_global);
dy_global.resize(ncells_global);
MPI_Allgatherv(&x[0], ncells, MPI_SPATIAL_T, &x_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&dx[0], ncells, MPI_SPATIAL_T, &dx_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&y[0], ncells, MPI_SPATIAL_T, &y_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&dy[0], ncells, MPI_SPATIAL_T, &dy_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
state_local->fill_circle(circ_radius, 80.0, 10.0);
MPI_Allgatherv(&state_local->H[0], ncells, MPI_STATE_T, &state_global->H[0], &nsizes[0], &ndispl[0], MPI_STATE_T, MPI_COMM_WORLD);
MPI_Allgatherv(&state_local->U[0], ncells, MPI_STATE_T, &state_global->U[0], &nsizes[0], &ndispl[0], MPI_STATE_T, MPI_COMM_WORLD);
MPI_Allgatherv(&state_local->V[0], ncells, MPI_STATE_T, &state_global->V[0], &nsizes[0], &ndispl[0], MPI_STATE_T, MPI_COMM_WORLD);
state_global->allocate_device_memory(ncells_global);
state_local->allocate_device_memory(ncells);
size_t one = 1;
state_global->dev_deltaT = ezcl_malloc(NULL, const_cast<char *>("dev_deltaT_global"), &one, sizeof(cl_real_t), CL_MEM_READ_WRITE, 0);
state_local->dev_deltaT = ezcl_malloc(NULL, const_cast<char *>("dev_deltaT"), &one, sizeof(cl_real_t), CL_MEM_READ_WRITE, 0);
dev_celltype_global = ezcl_malloc(NULL, const_cast<char *>("dev_celltype_global"), &ncells_global, sizeof(cl_char_t), CL_MEM_READ_ONLY, 0);
dev_i_global = ezcl_malloc(NULL, const_cast<char *>("dev_i_global"), &ncells_global, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_j_global = ezcl_malloc(NULL, const_cast<char *>("dev_j_global"), &ncells_global, sizeof(cl_int), CL_MEM_READ_ONLY, 0);
dev_level_global = ezcl_malloc(NULL, const_cast<char *>("dev_level_global"), &ncells_global, sizeof(cl_uchar_t), CL_MEM_READ_ONLY, 0);
// Set write buffers for data.
cl_command_queue command_queue = ezcl_get_command_queue();
ezcl_enqueue_write_buffer(command_queue, dev_H_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->H[0], &start_write_event);
ezcl_enqueue_write_buffer(command_queue, dev_U_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->U[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_V_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->V[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_celltype_global, CL_FALSE, 0, ncells_global*sizeof(cl_char_t), (void *)&mesh_global->celltype[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_i_global, CL_FALSE, 0, ncells_global*sizeof(cl_int), (void *)&mesh_global->i[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_j_global, CL_FALSE, 0, ncells_global*sizeof(cl_int), (void *)&mesh_global->j[0], NULL );
ezcl_enqueue_write_buffer(command_queue, dev_level_global, CL_TRUE, 0, ncells_global*sizeof(cl_uchar_t), (void *)&mesh_global->level[0], &end_write_event);
state_global->gpu_timers[STATE_TIMER_WRITE] += ezcl_timer_calc(&start_write_event, &end_write_event);
ezcl_enqueue_write_buffer(command_queue, dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->H[0], &start_write_event);
ezcl_enqueue_write_buffer(command_queue, dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->U[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_V, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->V[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_char_t), (void *)&mesh_local->celltype[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_i, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh_local->i[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_j, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh_local->j[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_level, CL_TRUE, 0, ncells*sizeof(cl_uchar_t), (void *)&mesh_local->level[0], &end_write_event);
state_local->gpu_timers[STATE_TIMER_WRITE] += ezcl_timer_calc(&start_write_event, &end_write_event);
mesh_global->dev_nlft = NULL;
mesh_global->dev_nrht = NULL;
mesh_global->dev_nbot = NULL;
mesh_global->dev_ntop = NULL;
mesh_local->dev_nlft = NULL;
mesh_local->dev_nrht = NULL;
mesh_local->dev_nbot = NULL;
mesh_local->dev_ntop = NULL;
// Kahan-type enhanced precision sum implementation.
double H_sum = state_local->mass_sum(enhanced_precision_sum);
if (mype == 0) printf ("Mass of initialized cells equal to %14.12lg\n", H_sum);
H_sum_initial = H_sum;
if (mype == 0) {
printf("Iteration 0 timestep n/a Sim Time 0.0 cells %ld Mass Sum %14.12lg\n", ncells_global, H_sum);
}
for (int i = 0; i < MESH_COUNTER_SIZE; i++){
mesh_global->cpu_counters[i]=0;
}
for (int i = 0; i < MESH_TIMER_SIZE; i++){
mesh_global->cpu_timers[i]=0.0;
}
// Set up grid.
#ifdef HAVE_GRAPHICS
set_display_mysize(ncells_global);
set_display_viewmode(view_mode);
set_display_window((float)mesh_global->xmin, (float)mesh_global->xmax, (float)mesh_global->ymin, (float)mesh_global->ymax);
set_display_outline((int)outline);
init_display(&argc, argv, "Shallow Water");
set_display_cell_coordinates(&x_global[0], &dx_global[0], &y_global[0], &dy_global[0]);
set_display_cell_data(&state_global->H[0]);
set_display_cell_proc(&mesh_global->proc[0]);
set_display_circle_radius(circle_radius);
draw_scene();
//if (verbose) sleep(5);
sleep(2);
// Set flag to show mesh results rather than domain decomposition.
view_mode = 1;
// Clear superposition of circle on grid output.
circle_radius = -1.0;
MPI_Barrier(MPI_COMM_WORLD);
cpu_timer_start(&tstart);
set_idle_function(&do_calc);
start_main_loop();
#else
MPI_Barrier(MPI_COMM_WORLD);
cpu_timer_start(&tstart);
for (int it = 0; it < 10000000; it++) {
do_calc();
}
#endif
return 0;
}
static int ncycle = 0;
static double simTime = 0.0;
extern "C" void do_calc(void)
{ double g = 9.80;
double sigma = 0.95;
int icount, jcount;
int icount_global, jcount_global;
#ifdef HAVE_GRAPHICS
static cl_event start_read_event, end_read_event;
#endif
if (cycle_reorder == ZORDER || cycle_reorder == HILBERT_SORT) {
do_sync = 0;
do_gpu_sync = 1;
}
// Initialize state variables for GPU calculation.
int &mype = mesh_local->mype;
int &numpe = mesh_local->numpe;
vector<int> &nsizes = mesh_local->nsizes;
vector<int> &ndispl = mesh_local->ndispl;
//int levmx = mesh->levmx;
size_t &ncells_global = mesh_global->ncells;
size_t &ncells = mesh_local->ncells;
size_t &ncells_ghost = mesh_local->ncells_ghost;
#ifdef HAVE_GRAPHICS
vector<spatial_t> &x = mesh_local->x;
vector<spatial_t> &dx = mesh_local->dx;
vector<spatial_t> &y = mesh_local->y;
vector<spatial_t> &dy = mesh_local->dy;
vector<spatial_t> &x_global = mesh_global->x;
vector<spatial_t> &dx_global = mesh_global->dx;
vector<spatial_t> &y_global = mesh_global->y;
vector<spatial_t> &dy_global = mesh_global->dy;
#endif
cl_mem &dev_H_global = state_global->dev_H;
cl_mem &dev_U_global = state_global->dev_U;
cl_mem &dev_V_global = state_global->dev_V;
cl_mem &dev_celltype_global = mesh_global->dev_celltype;
cl_mem &dev_i_global = mesh_global->dev_i;
cl_mem &dev_j_global = mesh_global->dev_j;
cl_mem &dev_level_global = mesh_global->dev_level;
cl_mem &dev_mpot_global = state_global->dev_mpot;
cl_mem &dev_celltype = mesh_local->dev_celltype;
cl_mem &dev_i = mesh_local->dev_i;
cl_mem &dev_j = mesh_local->dev_j;
cl_mem &dev_level = mesh_local->dev_level;
cl_mem &dev_mpot = state_local->dev_mpot;
vector<char_t> mpot;
vector<char_t> mpot_global;
size_t old_ncells = ncells;
size_t old_ncells_global = ncells_global;
size_t new_ncells = 0;
size_t new_ncells_global = 0;
double H_sum = -1.0;
double deltaT = 0.0;
cl_command_queue command_queue = ezcl_get_command_queue();
// Main loop.
for (int nburst = 0; nburst < outputInterval && ncycle < niter; nburst++, ncycle++) {
// To reduce drift in solution
if (do_sync) {
ezcl_enqueue_read_buffer(command_queue, state_local->dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->H[0], NULL);
ezcl_enqueue_read_buffer(command_queue, state_local->dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->U[0], NULL);
ezcl_enqueue_read_buffer(command_queue, state_local->dev_V, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->V[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_H_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->H[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_U_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->U[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_V_global, CL_TRUE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->V[0], NULL);
}
size_t local_work_size_global = MIN(ncells_global, TILE_SIZE);
size_t global_work_size_global = ((ncells_global+local_work_size_global - 1) /local_work_size_global) * local_work_size_global;
size_t block_size_global = global_work_size_global/local_work_size_global;
size_t local_work_size = MIN(ncells, TILE_SIZE);
size_t global_work_size = ((ncells+local_work_size - 1) /local_work_size) * local_work_size;
size_t block_size = global_work_size/local_work_size;
// Define basic domain decomposition parameters for GPU.
old_ncells = ncells;
old_ncells_global = ncells_global;
// Calculate the real time step for the current discrete time step.
double deltaT_cpu = -1.0;
double deltaT_cpu_local = -1.0;
if (do_cpu_calc) {
deltaT_cpu = state_global->set_timestep(g, sigma);
deltaT_cpu_local = state_local->set_timestep(g, sigma);
} // Complete CPU timestep calculation.
double deltaT_gpu = -1.0;
double deltaT_gpu_local = -1.0;
if (do_gpu_calc) {
deltaT_gpu = state_global->gpu_set_timestep(sigma);
deltaT_gpu_local = state_local->gpu_set_timestep(sigma);
} // Complete GPU calculation.
// Compare time step values and pass deltaT in to the kernel.
if (do_comparison_calc) {
int iflag = 0;
if (fabs(deltaT_cpu_local - deltaT_cpu) > .000001) iflag = 1;
if (fabs(deltaT_gpu_local - deltaT_gpu) > .000001) iflag = 1;
if (fabs(deltaT_gpu - deltaT_cpu) > .000001) iflag = 1;
if (fabs(deltaT_gpu_local - deltaT_cpu_local) > .000001) iflag = 1;
if (iflag) {
printf("Error with deltaT calc --- cpu_local %lf cpu_global %lf gpu_local %lf gpu_global %lf\n",
deltaT_cpu_local, deltaT_cpu, deltaT_gpu_local, deltaT_gpu);
}
}
deltaT = (do_gpu_calc) ? deltaT_gpu_local : deltaT_cpu_local;
simTime += deltaT;
if (do_cpu_calc) {
mesh_global->calc_neighbors(mesh_global->ncells);
mesh_local->calc_neighbors_local();
}
if (do_gpu_calc) {
mesh_global->gpu_calc_neighbors();
mesh_local->gpu_calc_neighbors_local();
}
if (do_comparison_calc) {
mesh_local->compare_neighbors_all_to_gpu_local(mesh_global, &nsizes[0], &ndispl[0]);
}
mesh_local->partition_measure();
// Currently not working -- may need to be earlier?
//if (do_cpu_calc && ! mesh->have_boundary) {
// state->add_boundary_cells(mesh);
//}
// Apply BCs is currently done as first part of gpu_finite_difference and so comparison won't work here
// Execute main kernel
if (do_cpu_calc) {
state_global->calc_finite_difference(deltaT);
state_local->calc_finite_difference(deltaT);
}
if (do_gpu_calc) {
state_global->gpu_calc_finite_difference(deltaT);
state_local->gpu_calc_finite_difference(deltaT);
}
if (do_comparison_calc) {
state_local->compare_state_all_to_gpu_local(state_global, ncells, ncells_global, mype, ncycle, &nsizes[0], &ndispl[0]);
}
// Size of arrays gets reduced to just the real cells in this call for have_boundary = 0
if (do_cpu_calc) {
state_global->remove_boundary_cells();
state_local->remove_boundary_cells();
}
vector<int> ioffset(block_size);
vector<int> ioffset_global(block_size_global);
//vector<int> newcount_global(block_size_global);
if (do_cpu_calc) {
mpot.resize(ncells_ghost);
mpot_global.resize(ncells_global);
state_global->calc_refine_potential(mpot_global, icount_global, jcount_global);
state_local->calc_refine_potential(mpot, icount, jcount);
} // Complete CPU calculation.
if (do_gpu_calc) {
new_ncells_global = state_global->gpu_calc_refine_potential(icount_global, jcount_global);
new_ncells = state_local->gpu_calc_refine_potential(icount, jcount);
}
if (do_comparison_calc) {
int icount_test;
MPI_Allreduce(&icount, &icount_test, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (icount_test != icount_global) {
printf("%d: DEBUG -- icount is %d icount_test %d icount_global is %d\n",mype,icount,icount_test,icount_global);
}
if (state_local->dev_mpot) {
mesh_local->compare_mpot_all_to_gpu_local(&mpot[0], &mpot_global[0], state_local->dev_mpot, state_global->dev_mpot, ncells_global, &nsizes[0], &ndispl[0], ncycle);
}
}
// Sync up cpu array with gpu version to reduce differences due to minor numerical differences
// otherwise cell count will diverge causing code problems and crashes
if (state_local->dev_mpot) {
if (do_sync) {
ezcl_enqueue_read_buffer(command_queue, dev_mpot, CL_TRUE, 0, ncells*sizeof(cl_char_t), &mpot[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_mpot_global, CL_TRUE, 0, ncells_global*sizeof(cl_char_t), &mpot_global[0], NULL);
}
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, dev_mpot, CL_TRUE, 0, ncells*sizeof(cl_char_t), &mpot[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_mpot_global, CL_TRUE, 0, ncells_global*sizeof(cl_char_t), &mpot_global[0], NULL);
}
}
if (state_local->dev_mpot) {
int mcount, mtotal;
if (do_comparison_calc) {
mesh_local->compare_ioffset_all_to_gpu_local(old_ncells, old_ncells_global, block_size, block_size_global, &mpot[0], &mpot_global[0], mesh_local->dev_ioffset, mesh_global->dev_ioffset, &ioffset[0], &ioffset_global[0], &mesh_global->celltype[0], &mesh_global->i[0], &mesh_global->j[0]);
}
if (do_gpu_sync) {
mtotal = 0;
for (uint ig=0; ig<(old_ncells+TILE_SIZE-1)/TILE_SIZE; ig++){
mcount = 0;
for (uint ic=ig*TILE_SIZE; ic<(ig+1)*TILE_SIZE; ic++){
if (ic >= old_ncells) break;
if (mesh_local->celltype[ic] == REAL_CELL) {
mcount += mpot[ic] ? 4 : 1;
} else {
mcount += mpot[ic] ? 2 : 1;
}
}
//ioffset[ig] = mtotal;
mtotal += mcount;
}
ezcl_enqueue_write_buffer(command_queue, mesh_local->dev_ioffset, CL_TRUE, 0, block_size*sizeof(cl_int), &ioffset[0], NULL);
mtotal = 0;
for (uint ig=0; ig<(old_ncells_global+TILE_SIZE-1)/TILE_SIZE; ig++){
mcount = 0;
for (uint ic=ig*TILE_SIZE; ic<(ig+1)*TILE_SIZE; ic++){
if (ic >= old_ncells_global) break;
if (mesh_global->celltype[ic] == REAL_CELL) {
mcount += mpot_global[ic] ? 4 : 1;
} else {
mcount += mpot_global[ic] ? 2 : 1;
}
}
//ioffset_global[ig] = mtotal;
mtotal += mcount;
}
ezcl_enqueue_write_buffer(command_queue, mesh_global->dev_ioffset, CL_TRUE, 0, block_size_global*sizeof(cl_int), &ioffset_global[0], NULL);
}
}
if (do_cpu_calc) {
state_global->rezone_all(icount_global, jcount_global, mpot_global);
state_local->rezone_all(icount, jcount, mpot);
// Clear does not delete mpot, so have to swap with an empty vector to get
// it to delete the mpot memory. This is all to avoid valgrind from showing
// it as a reachable memory leak
mpot_global.clear();
mpot.clear();
//vector<char_t>().swap(mpot_global);
//vector<char_t>().swap(mpot);
}
// Resize the mesh, inserting cells where refinement is necessary.
if (do_gpu_calc) {
if (state_local->dev_mpot){
state_global->gpu_rezone_all(icount_global, jcount_global, localStencil);
state_local->gpu_rezone_all(icount, jcount, localStencil);
}
}
ncells = new_ncells;
mesh_local->ncells = new_ncells;
ncells_global = new_ncells_global;
mesh_global->ncells = new_ncells_global;
if (do_comparison_calc) {
state_local->compare_state_all_to_gpu_local(state_global, ncells, ncells_global, mype, ncycle, &nsizes[0], &ndispl[0]);
mesh_local->compare_indices_all_to_gpu_local(mesh_global, ncells_global, &nsizes[0], &ndispl[0], ncycle);
} // do_comparison_calc
vector<int> nsizes_save(numpe);
vector<int> ndispl_save(numpe);
nsizes_save = nsizes;
ndispl_save = ndispl;
if (do_cpu_calc) {
state_local->do_load_balance_local(new_ncells);
}
nsizes = nsizes_save;
ndispl = ndispl_save;
if (do_gpu_calc) {
state_local->gpu_do_load_balance_local(new_ncells);
}
if (do_comparison_calc) {
state_local->compare_state_all_to_gpu_local(state_global, ncells, ncells_global, mype, ncycle, &nsizes[0], &ndispl[0]);
mesh_local->compare_indices_all_to_gpu_local(mesh_global, ncells_global, &nsizes[0], &ndispl[0], ncycle);
} // do_comparison_calc
#ifdef XXX // not rewritten yet
if (do_gpu_calc) {
mesh->gpu_count_BCs(block_size, local_work_size, global_work_size, dev_ioffset);
}
#endif
ioffset.clear();
ioffset_global.clear();
H_sum = -1.0;
if (do_comparison_calc) {
double cpu_mass_sum = state_global->mass_sum(enhanced_precision_sum);
double cpu_mass_sum_local = state_local->mass_sum(enhanced_precision_sum);
double gpu_mass_sum = state_global->gpu_mass_sum(enhanced_precision_sum);
H_sum = state_local->gpu_mass_sum(enhanced_precision_sum);
int iflag = 0;
if (fabs(cpu_mass_sum_local - cpu_mass_sum) > CONSERVATION_EPS) iflag = 1;
//if (fabs(H_sum - gpu_mass_sum) > CONSERVATION_EPS) iflag = 1;
//if (fabs(gpu_mass_sum - cpu_mass_sum) > CONSERVATION_EPS) iflag = 1;
if (fabs(H_sum - cpu_mass_sum_local) > CONSERVATION_EPS) iflag = 1;
if (iflag) {
printf("Error with mass sum calculation -- cpu_mass_sum_local %lf cpu_mass_sum %lf gpu_mass_sum_local %lf gpu_mass_sum %lf\n",
cpu_mass_sum_local, cpu_mass_sum, H_sum, gpu_mass_sum);
}
}
mesh_global->proc.resize(ncells_global);
mesh_local->proc.resize(ncells);
if (state_local->dev_mpot) {
vector<int> index(ncells);
vector<int> index_global(ncells_global);
mesh_global->partition_cells(numpe, index_global, cycle_reorder);
mesh_local->partition_cells(numpe, index, cycle_reorder);
//state->state_reorder(index);
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, dev_celltype, CL_FALSE, 0, ncells*sizeof(cl_char_t), (void *)&mesh_local->celltype[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_i, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh_local->i[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_j, CL_FALSE, 0, ncells*sizeof(cl_int), (void *)&mesh_local->j[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_level, CL_TRUE, 0, ncells*sizeof(cl_uchar_t), (void *)&mesh_local->level[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_celltype_global, CL_FALSE, 0, ncells_global*sizeof(cl_char_t), (void *)&mesh_global->celltype[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_i_global, CL_FALSE, 0, ncells_global*sizeof(cl_int), (void *)&mesh_global->i[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_j_global, CL_FALSE, 0, ncells_global*sizeof(cl_int), (void *)&mesh_global->j[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_level_global, CL_TRUE, 0, ncells_global*sizeof(cl_uchar_t), (void *)&mesh_global->level[0], NULL);
}
}
if (do_gpu_sync) {
ezcl_enqueue_write_buffer(command_queue, state_local->dev_H, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->H[0], NULL);
ezcl_enqueue_write_buffer(command_queue, state_local->dev_U, CL_FALSE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->U[0], NULL);
ezcl_enqueue_write_buffer(command_queue, state_local->dev_V, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&state_local->V[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_H_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->H[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_U_global, CL_FALSE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->U[0], NULL);
ezcl_enqueue_write_buffer(command_queue, dev_V_global, CL_TRUE, 0, ncells_global*sizeof(cl_state_t), (void *)&state_global->V[0], NULL);
}
} // End burst loop
if (H_sum < 0) {
H_sum = state_local->mass_sum(enhanced_precision_sum);
}
#ifdef __APPLE__
if (isnan(H_sum)) {
#else
if (std::isnan(H_sum)) {
#endif
printf("Got a NAN on cycle %d\n",ncycle);
exit(-1);
}
if (mype == 0){
printf("Iteration %4d timestep %lf Sim Time %lf cells %ld Mass Sum %14.12lg Mass Change %12.6lg\n",
ncycle, deltaT, simTime, ncells_global, H_sum, H_sum - H_sum_initial);
}
#ifdef HAVE_GRAPHICS
cl_mem dev_x = ezcl_malloc(NULL, const_cast<char *>("dev_x"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dx = ezcl_malloc(NULL, const_cast<char *>("dev_dx"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_y = ezcl_malloc(NULL, const_cast<char *>("dev_y"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
cl_mem dev_dy = ezcl_malloc(NULL, const_cast<char *>("dev_dy"), &ncells, sizeof(cl_spatial_t), CL_MEM_READ_WRITE, 0);
mesh_local->gpu_calc_spatial_coordinates(dev_x, dev_dx, dev_y, dev_dy);
x.resize(ncells);
dx.resize(ncells);
y.resize(ncells);
dy.resize(ncells);
vector<state_t> H_graphics(ncells);
ezcl_enqueue_read_buffer(command_queue, dev_x, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&x[0], &start_read_event);
ezcl_enqueue_read_buffer(command_queue, dev_dx, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&dx[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_y, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&y[0], NULL);
ezcl_enqueue_read_buffer(command_queue, dev_dy, CL_FALSE, 0, ncells*sizeof(cl_spatial_t), (void *)&dy[0], NULL);
ezcl_enqueue_read_buffer(command_queue, state_local->dev_H, CL_TRUE, 0, ncells*sizeof(cl_state_t), (void *)&H_graphics[0], &end_read_event);
gpu_time_graphics += ezcl_timer_calc(&start_read_event, &end_read_event);
struct timespec tstart_cpu;
cpu_timer_start(&tstart_cpu);
ezcl_device_memory_remove(dev_x);
ezcl_device_memory_remove(dev_dx);
ezcl_device_memory_remove(dev_y);
ezcl_device_memory_remove(dev_dy);
x_global.resize(ncells_global);
dx_global.resize(ncells_global);
y_global.resize(ncells_global);
dy_global.resize(ncells_global);
vector<state_t> H_graphics_global(ncells_global);
MPI_Allgatherv(&x[0], ncells, MPI_SPATIAL_T, &x_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&dx[0], ncells, MPI_SPATIAL_T, &dx_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&y[0], ncells, MPI_SPATIAL_T, &y_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&dy[0], ncells, MPI_SPATIAL_T, &dy_global[0], &nsizes[0], &ndispl[0], MPI_SPATIAL_T, MPI_COMM_WORLD);
MPI_Allgatherv(&H_graphics[0], ncells, MPI_STATE_T, &H_graphics_global[0], &nsizes[0], &ndispl[0], MPI_STATE_T, MPI_COMM_WORLD);
for (int ic=0; ic<(int)ncells; ic++){mesh_local->proc[ic]=mype;}
//MPI_Allgatherv(&mesh_local->proc[0], ncells, MPI_INT, &mesh_global->proc[0], &nsizes[0], &ndispl[0], MPI_INT, MPI_COMM_WORLD);
set_display_mysize(ncells_global);
set_display_viewmode(view_mode);
set_display_cell_coordinates(&x_global[0], &dx_global[0], &y_global[0], &dy_global[0]);
set_display_cell_data(&H_graphics_global[0]);
set_display_cell_proc(&mesh_global->proc[0]);
set_display_circle_radius(circle_radius);
draw_scene();
MPI_Barrier(MPI_COMM_WORLD);
gpu_time_graphics += (long)(cpu_timer_stop(tstart_cpu)*1.0e-9);
#endif
// Output final results and timing information.
if (ncycle >= niter) {
//free_display();
// Get overall program timing.
double elapsed_time = cpu_timer_stop(tstart);
state_global->output_timing_info(do_cpu_calc, do_gpu_calc, elapsed_time);
state_local->output_timing_info(do_cpu_calc, do_gpu_calc, elapsed_time);
mesh_local->parallel_output("GPU: graphics time was",(double) gpu_time_graphics * 1.0e-9, 0, "s");
mesh_local->print_partition_measure();
mesh_local->print_calc_neighbor_type();
mesh_local->print_partition_type();
if (mype ==0){
printf("CPU: rezone frequency \t %8.4f\tpercent\n", (double)mesh_local->get_cpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("CPU: calc neigh frequency \t %8.4f\tpercent\n", (double)mesh_local->get_cpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
printf("CPU: load balance frequency \t %8.4f\tpercent\n", (double)mesh_local->get_cpu_counter(MESH_COUNTER_LOAD_BALANCE)/(double)ncycle*100.0 );
printf("GPU: rezone frequency \t %8.4f\tpercent\n", (double)mesh_local->get_gpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("GPU: calc neigh frequency \t %8.4f\tpercent\n", (double)mesh_local->get_gpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
printf("GPU: load balance frequency \t %8.4f\tpercent\n", (double)mesh_local->get_gpu_counter(MESH_COUNTER_LOAD_BALANCE)/(double)ncycle*100.0 );
printf("GPU: refine_smooth_iter per rezone \t %8.4f\t\n", (double)mesh_local->get_gpu_counter(MESH_COUNTER_REFINE_SMOOTH)/(double)mesh_local->get_gpu_counter(MESH_COUNTER_REZONE) );
printf("CPU: rezone frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_cpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("CPU: calc neigh frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_cpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
printf("CPU: load balance frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_cpu_counter(MESH_COUNTER_LOAD_BALANCE)/(double)ncycle*100.0 );
printf("GPU: rezone frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_gpu_counter(MESH_COUNTER_REZONE)/(double)ncycle*100.0 );
printf("GPU: calc neigh frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_gpu_counter(MESH_COUNTER_CALC_NEIGH)/(double)ncycle*100.0 );
printf("GPU: load balance frequency global \t %8.4f\tpercent\n", (double)mesh_global->get_gpu_counter(MESH_COUNTER_LOAD_BALANCE)/(double)ncycle*100.0 );
printf("GPU: refine_smooth_iter per rezone \t %8.4f\t\n", (double)mesh_global->get_gpu_counter(MESH_COUNTER_REFINE_SMOOTH)/(double)mesh_global->get_gpu_counter(MESH_COUNTER_REZONE) );
}
ezcl_device_memory_remove(mesh_local->dev_corners_i);
ezcl_device_memory_remove(mesh_local->dev_corners_j);
ezcl_device_memory_remove(mesh_global->dev_corners_i);
ezcl_device_memory_remove(mesh_global->dev_corners_j);
if (mesh_local->dev_nlft != NULL){
ezcl_device_memory_remove(mesh_local->dev_nlft);
ezcl_device_memory_remove(mesh_local->dev_nrht);
ezcl_device_memory_remove(mesh_local->dev_nbot);
ezcl_device_memory_remove(mesh_local->dev_ntop);
ezcl_device_memory_remove(mesh_global->dev_nlft);
ezcl_device_memory_remove(mesh_global->dev_nrht);
ezcl_device_memory_remove(mesh_global->dev_nbot);
ezcl_device_memory_remove(mesh_global->dev_ntop);
}
mesh_local->terminate();
state_local->terminate();
mesh_global->terminate();
state_global->terminate();
ezcl_terminate();
if (mesh_local->numpe > 1) L7_Free(&mesh_local->cell_handle);
L7_Dev_Free();
delete state_local;
delete state_global;
// Release kernels and finalize the OpenCL elements.
ezcl_finalize();
ezcl_mem_walk_all();
L7_Terminate();
exit(0);
} // Complete final output.
}