-
Notifications
You must be signed in to change notification settings - Fork 97
/
inference_lora.py
58 lines (47 loc) · 1.72 KB
/
inference_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
'''
Author: lihaitao
Date: 2023-05-20 15:06:50
LastEditors: Do not edit
LastEditTime: 2023-05-20 19:34:44
'''
from transformers import AutoModel
import torch
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
from modeling_chatglm import ChatGLMForConditionalGeneration
from tokenization_chatglm import ChatGLMTokenizer
import torch
from peft import PeftModel
import argparse
def generate(model,tokenizer,text):
with torch.no_grad():
input_text = text
ids = tokenizer.encode(input_text)
input_ids = torch.LongTensor([ids]).cuda()
output = model.generate(
input_ids=input_ids,
min_length=20,
max_length=512,
do_sample=False,
temperature=0.7,
num_return_sequences=1
)[0]
output = tokenizer.decode(output)
# answer = output.split(input_text)[-1]
return output.strip()
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("--base_model", type=str, default="model/LexiLaw")
argparser.add_argument("--adapter", type=str, default="model/adapter")
argparser.add_argument("--interactive", default=True)
args = argparser.parse_args()
model = ChatGLMForConditionalGeneration.from_pretrained(args.base_model, trust_remote_code=True)
tokenizer = ChatGLMTokenizer.from_pretrained("model/LexiLaw", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(model, args.adapter).eval()
print(torch.cuda.device_count())
print(torch.cuda.current_device())
peft_model.half().cuda()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
while True:
text = input("Input: ")
print(generate(peft_model,tokenizer,text))