Skip to content

Latest commit

 

History

History
957 lines (671 loc) · 31.4 KB

README.md

File metadata and controls

957 lines (671 loc) · 31.4 KB

GLuaTest

🎉 The missing test framework for GMod 🎉

GLuaTest is a testing framework built for Garry's Mod. Its job is to make writing automated tests for Garry's Mod projects easy and tolerable.

It offers an approachable (albeit strange) syntax that makes writing tests intuitive.

GLuaTest takes a lot of inspiration from both Ruby's RSpec and JavaScript's Jest

Glossary

GLuaLint


(Are you an impatient software developer? Check out the quickstart guide to go fast)

(Is the idea of testing your code new to you? That's great! Check out the guided testing walkthrough to see some great examples of how to test real code)


Features

Simple test setup and quirky (yet intuitive!) test syntax

-- lua/tests/project_name/main.lua

return {
    groupName = "MyProject",
    cases = {
        {
            name = "Should create project tables",
            func = function()
                expect( MyProject ).to.exist()
            end
        }
    }
}

Beautiful test output

Handsome, informative error reporting

image


Some additional reading:

Foreword about automated testing in GMod
Automated testing is a crucial part of any software workflow. Your automated tests define a contract that give you and your would-be users confidence that the project will behave properly.

Without tests, you may find yourself spending large amounts of time debugging obscure issues. Automated tests require more work up front, but will save you time and frustration in the future as your project grows.


Traditionally, Garry's Mod developers have included, at most, a few crucial tests with their codebase - usually only ran manually when the maintainer remembers. Modern testing infrastructure allow you to run your tests on a Pull Request, before the code has made it into the main branch.

Such a tool has never existed for Garry's Mod. Until now!

Technical info
GLuaTest was made to run on GitHub Actions, but it's flexible enough to fit anywhere you'd like.

You can use the GLuaTest Docker image to spin up a test server, run your tests, and see the output - all without having to install a server of your own.

This makes it easy to test your code in a real Garry's Mod environment without worrying about other addons or config values.


Usage

GLuaTest can be used in a number of ways. Whether you want to run your tests when you open a PR, or if you just want to have it run on your development server - we've got you covered.


Automated testing on Pull Requests

Run your tests in a Pull Request

To set up automated test runs, we'll use GitHub Workflows.

It's actually really simple to set up the workflow. Add the following file to your project:

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main

And that's it! The next time you make a PR, it'll spin up a new test server, run your project's test, and report any failures in your PR.

There are a couple of config options you can use though.


Requirements

If your project depends on an external project, GLuaTest can automatically grab them for you

Let's say you needed:

Make a new file somewhere in your project (i.e. lua/tests/my_project/requirements.txt) with the following:

TeamUlysses/ulx
TeamUlysses/ulib
CFC-Servers/gm_logger@lua

Each line should be in the format of: <Github owner name>/<Project name>.

You can use a specific branch of the project by adding @<branch-name> to the end of the line.

(If your requirement is hosted in a private GitHub repo, you'll need to do some annoying legwork to get everything connected. More info here.)

Great, now we update our workflow to use our requirements file

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main
    with:
      requirements: lua/tests/my_project/requirements.txt

All done! Commit those changes and GLuaTest will automatically clone your requirements.


Server Configs

Sometimes your project requires specific convars / server settings

Similar to how you define requirements, we'll make a new .cfg file.

This file will be dumped straight into the end of server's server.cfg file. You can override existing configs, too.

So, create the file:

# Example file name/location: lua/tests/my_project/server.cfg
my_convar 1
name "My favorite server"

Update the workflow:

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main
    with:
      server-cfg: lua/tests/my_project/server.cfg

And that's it!


Gamemodes

If you're testing a non-sandbox project, you need to tell the test server which gamemode to run

Simply specify the desired gamemode in your workflow's with section.

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main
    with:
      gamemode: darkrp

Workshop Collection

To make dependency management easier, you can tell the test server to use a specific workshop collection.

Add the collection ID in your workflow's with section.

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main
    with:
      collection: 1629732176

GMod Branch

You can run your tests on the live branch of the `x86-64` branch

Just set the branch input in your workflow:

name: GLuaTest Runner

on:
  pull_request:

jobs:
  run-tests:
    uses: CFC-Servers/GLuaTest/.github/workflows/run_tests.yml@main
    with:
      branch: x86-64

All options

Here are all of the options you can pass to the workflow
Name Description Example
server-cfg A path (relative to project directory) with extra server config options data_static/my_addon.cfg
requirements A path (relative to project directory) with a list of all requirements to test this project data_static/my_addon.txt
gamemode The name of the gamemode for the test server to run darkrp
collection The workshop ID of the collection for the test server to use 1629732176
ssh-private-key The Private SSH key to use when cloning the dependencies -----BEGIN OPENSSH PRIVATE KEY-----\n...
github-token A GitHub Personal Access Token, used when cloning dependencies
timeout How many minutes to let the job run before killing the server 10
branch Which GMod branch to run your tests on x86-64

Speed 🏃

Running tests in a GitHub Runner is surprisingly fast.

Even with hundreds of tests, you can expect the entire check to take under 30 seconds!

(Failing async tests will slow down the time significantly because it has to wait for the timeouts)

Cost 💸

You should incur no costs by using GitHub Actions.

Nothing better than free 😎

Running locally

Running your tests locally

It's actually extremely simple to run GLuaTest locally.

Just put GLuaTest into your addons/ directory, set gluatest_enable 1 on the server, and restart!

All of your tests will run when the server starts up and you can view the output in the server console/logs.

Running locally without a server

Running your tests locally without a server

Sounds weird, right? Well it's really not all that different from running GLuaTest on GitHub.

In fact, many of the steps are the same.

Requirements / Server Configs

If your project depends on other projects, you can have GLuaTest automatically acquire them for you.

Take a quick skim through the GitHub Action setup instructions for the relevant sections on how to set this up.

Environment setup

When running GLuaTest without a server, you need to tell it where to find your project and custom files.

You can do that with simple environment variables, i.e.:

export REQUIREMENTS=/absolute/path/to/requirements.txt
export CUSTOM_SERVER_CONFIG=/absolute/path/to/server.cfg
export PROJECT_DIR=/home/me/Code/my_project
export GAMEMODE="sandbox"
export COLLECTION_ID="12345"
export SSH_PRIVATE_KEY="the-entire-private-key"
export GITHUB_TOKEN="a-personal-access-token"
  • You can skip the REQUIREMENTS and CUSTOM_SERVER_CONFIG if you don't need them, but you must set the PROJECT_DIR variable.

  • The GAMEMODE variable defaults to "sandbox", so you can omit it if that's appropriate for your tests.

  • The COLLECTION_ID variable allows you to pass a workshop collection ID for the server to grab before starting.

  • The SSH_PRIVATE_KEY variable is used when one or more of your Requirements are hosted on a Private Repository.

  • The GITHUB_TOKEN variable, like the SSH_PRIVATE_KEY is also used to grant access to private repositories. Personal Access Tokens are a simpler (but ultimately worse) alternative to a full SSH keypair.

(Read more about privately-hosted project requirements: https://github.com/CFC-Servers/GLuaTest/wiki/Private-Requirements )

Running in Docker

Now you'll need docker-compose. I'll leave it to you to figure out how to install it: https://docs.docker.com/compose/install/

Once that's done, you just need to run the docker-compose file in the docker/ directory.

On Linux/OSX, this looks like:

docker-compose up

And.. that's it! It'll pull the latest Runner, start the server, and run your tests. You can even follow the test output live.


Writing Tests ✍️

Your first test file

In your GLua project, create a new directory: lua/tests/<your project name>/.

This is where you'll keep the tests for your project. You can put all of your tests in one file, or split the files up based on module/responsibility.

For example, if your addon had two entities you'd like to test, you could make lua/tests/your_project/entity_1.lua and lua/tests/your_project/entity_2.lua. We suggest you group your tests, but it'll work either way.

The test file itself is fairly simple. It has a few keys you can use, but the only requirement is the cases key; a table of Test Cases.

For example:

-- lua/tests/my_clock/get_time.lua

return {
    cases = {
        {
            name = "It should return the correct time",
            func = function()
                local myClock = Clock.New()
                local realTime = os.time()

                expect( myClock:GetTime() ).to.equal( realTime )
            end
        }
    }
}

The Test Group

The Test Group (that is, the table you return from your Test File) can have the following keys:

Key Type Description Required
cases table A table of Test Cases ✔️
groupName string The name of the module/function this Test Group is testing
beforeAll function A function to run once before running your Test Group
beforeEach function A function to run before each Test Case in your Test Group. Takes a state table
afterAll function A function to run after all Test Cases in your Test Group
afterEach function A function to run after each Test Case in your Test Group. Takes a state table

The Test Case

Each Test Case is a table with the following keys:

Key Type Description Required Default
name string Name of the Test Case (for reference later) ✔️
func function The actual test function. Takes a state table ✔️
async bool If your test relies on timers, hooks, or callbacks, it must run asynchronously false
timeout int How long to wait for your async test before marking it as having timed out 60
cleanup function The function to run after running your test. Takes a state table
when bool / function Only run this test case "when" this field is (or evaluates to) true
skip bool / function Skip this test case if this field is (or evaluates to) true

The expect function

The heart of a test is the expectation. You did a thing, and now you expect a result.

In each test function, you have access to the expect function.

Let's say you expect "a" to equal "b". In regular Lua you might do:

assert( "a" == "b" )

Similarly, in GLuaTest, you'd do:

expect( "a" ).to.equal( "b" )

There are a number of different expectations you can use.

Expectations

Expectation Description Example
equal/eq Basic == equality check expect( a ).to.equal( b )
aboutEqual Basic == equality check, with a tolerance expect( 0.999 ).to.aboutEqual( 1 )
beLessThan Basic < comparison expect( 5 ).to.beLessThan( 6 )
beGreaterThan Basic > comparison expect( 10 ).to.beGreaterThan( 1 )
beBetween Expects the subject to be less than min, and greater than max expect( 5 ).to.beBetween( 3, 7 )
beTrue Expects the subject to literally be true expect( Entity( 1 ):IsPlayer() ).to.beTrue()
beFalse Expects the subject to literally be false expect( istable( "test" ) ).to.beFalse()
beValid Expects IsValid( value ) to return true expect( ply ).to.beValid()
beInvalid Expects IsValid( value ) to return false expect( nil ).to.beInvalid()
beNil Expects the subject to literally be nil expect( player.GetAll()[2] ).to.beNil()
exist Expects the subject to not be nil expect( MyProject ).to.exist()
beA/beAn Expects the subject to have the given type expect( "test" ).to.beA( "string" )
succeed Expects the subject function to run without error expect( func, param ).to.succeed()
err Expects the subject function to throw an error expect( error ).to.err()
errWith Expects the subject function to throw the given error expect( badFunc, param ).to.errWith( "error message" )
called Expects the subject Stub have been called expect( myStub ).was.called()

Expectation Negation

You can invert an Expectation by using .toNot or .notTo in place of your .to

i.e.:

expect( ply ).toNot.beInvalid()
expect( "test" ).notTo.beA( "table" )

Was

You may replace .to with .was in any expectation. .wasNot is also valid.

Primarily this is syntax sugar for the called expectation. Technically these two calls are equivalent:

expect( func ).to.called()
expect( func ).was.called()

when and skip

These fields can be used to control your test invocation.

For example, to run your test case only on the x86-64 branch:

{
    name = "Is valid on x86-64",
    when = BRANCH == "x86-64",
    func = function()
        -- x86-64 specific stuff here
    end
}

Skipping is also handy if you want to disable a test but keep the code:

{
    name = "Broken test (but I'll definitely fix it some day 100%),
    skip = true,
    func = function() error() end
}

Note: skip takes precedence over when


The stub function

Isolating your tests is important. Stubs are a powerful way of controlling which parts of your code your tests invoke.

Let's say your addon looks like this:

MyProject = {}

function MyProject.UserExistsInDatabase( user )
    local userObject = lookupUserInDatabase( user )
    return userObject.exists
end

function MyProject.CheckUser( user )
    if not MyProject.UserExistsInDatabase( user ) then return end
    if not user.name then return end
    if #user.name == 0 then return end

    return true
end

You want to test the functionality of CheckUser.

There are three checks in CheckUser:

  • The user exists in the database
  • The user's name exists
  • The user's name is not empty

You could add a fake user to the database and use the function normally, but you're not testing the database, you're testing CheckUser.

Instead, we could pretend that UserExistsInDatabase returns true for our tests. We can do this using a Stub.

-- lua/tests/my_project/checkuser.lua

return {
    groupName = "CheckUser",
    beforeEach = function( state )
        state.validUser = { name = "Valid User" }
    end,

    cases = {
        {
            name = "Should return true with a valid User",
            func = function( state )
                stub( MyProject, "UserExistsInDatabase" ).returns( true )

                expect( MyProject.CheckUser, state.validUser ).to.beTrue()
            end
        },
        {
            name = "Should check if user exists in database",
            func = function()
                local dbCheck = stub( MyProject, "UserExistsInDatabase" ).returns( true )

                MyProject.CheckUser( state.validUser )

                expect( dbCheck ).to.haveBeenCalled()
            end
        }
    }
}

Now our CheckUser test only tests the functionality in CheckUser, and doesn't depend on any other function's correctness.

A Stub will replace the given function on the given table with a callable Stub object. The Stub keeps track of how many times it was called, and what parameters it was called with.

Stub Restoration

If you need to restore the original functionality of the stubbed function, you can use stub:Restore().

Un-restored stubs are automatically restored after each Test Case, but you can manually call :Restore() any time you need.

Empty Stubs

You can create an empty Stub that doesn't automatically replace anything by calling stub() with no arguments.

You can use the Stub like normal. This is particularly useful for functions that take callbacks, i.e.:

{
    name = "RunCallback should run the given callback",
    func = function()
        local myStub = stub()

        MyProject.RunCallback( myStub )

        expect( myStub ).to.haveBeenCalled()
    end
}

Restoring empty stubs is a no-op, but won't break anything.

Stub return values

You can tell your stubs what to return when they're called.

.with( function )

If you want to replace a function with another function, you can use the .with modifier.

When your stub is called, it will pass all of the parameters it received to the function you gave to .with, and will return whatever your given function returns.

.returns( ... )

If you just want to return a certain value every time your Stub is called, you can use the .returns modifier.

When your Stub is called, it will simply return everything you passed into .returns.

.returnsSequence( table sequence, any default )

If you need to specify a sequence of values that your stub will return as it's called, .returnsSequence is the right choice.

Every time your stub is called, it will return the next value in the sequence table. One cool trick is to include gaps in your sequence table. So, for example, if you wanted to return "" for every call except the 6th one, you could do:

stub( net, "ReadString" ).returnsSequence( { [6] = "hello" }, "" )

This would make net.ReadString return "" for the first 5 calls, "hello" for the 6th, and "" for every call after.

Note: Because lua discards all indices with nil values, using the default parameter will override any intentional nils in your sequence table.


Async tests and the done/fail functions

If your test relies on timers, hooks, callbacks, etc., then you need to run your test Asynchronously.

The test is otherwise completely normal, but it's your job to tell GLuaTest when the test is done by calling done() or fail() anywhere in your test.

done() and timeout functionality

If your test fails for some reason before it can call done(), it'll be marked as having failed after timing out.

If you know the maximum amount of time your test will take, you can include the timeout key on the test with the number of seconds to wait until failing the test.

If you don't include a timeout on your Test Case, you'll have to wait for the default 60-second timer before the test can complete. So if speed is important to you, consider setting a conservative timeout value for your async tests.

For example, say we were trying to test this code:

-- lua/my_project/main.lua

MyProject = { didRun = false }

function MyProject:StartRun()
    timer.Simple( 2, function()
        MyProject.didRun = true
    end )
end

We want to make sure that when MyProject:StartRun() is called, that it changes MyProject.didRun two seconds later.

Our test might look like:

-- lua/tests/my_project/start_run.lua

return {
    groupName = "StartRun",
    cases = {
        {
            name = "Runs within two seconds of being called",
            async = true,
            timeout = 3, -- If it hasn't finished in 3 seconds, something went wrong and it can be marked as failed
            func = function()
                MyProject:StartRun()

                timer.Simple( 2, function()
                    expect( MyProject.didRun ).to.beTrue()
                    done()
                end )
            end
        }
    }
}

The fail() function

In the event that you want to fail a test manually, you can call fail( "with a reason if you want to" ) anywhere in your test case.

This is useful if you have a callback/timer/etc that should never run, and indeed, fail your test if it does.

Here's an example:

-- lua/tests/my_project/async_failure.lua

return {
    groupName = "Async Failure Examples",
    cases = {
        {
            name = "HTTP Request succeeds",
            async = true,
            timeout = 5,
            func = function()
                local success = function( body )
                    -- Expect exactly 1024 bytes in the body (for example)
                    expect( #body ).to.equal( 1024 )
                    done()
                end

                local failure = function( reason )
                    -- This shouldn't ever happen! If it does, we need to fail the test instead of letting it time out.
                    fail( "HTTP Request failed with reason: " .. reason )

                    -- We don't need to call done() here because we already called fail() :)
                end

                http.Fetch( "my url", success, failure )
            end
        }
    }
}

Before / After functions

You may find yourself writing a lot of repetitive setup/teardown code in each of your Test Cases.

GLuaTest has a few convenience functions for you to use.

beforeEach/afterEach

Here's an example of how beforeEach and afterEach could make your life easier while working with entities:

-- lua/tests/my_project/tickle_monster.lua

return {
    groupName = "Tickle Monster",

    beforeEach = function( state )
        state.ent = ents.Create( "sent_ticklemonster" )
        state.ent:Spawn()
    end,

    afterEach = function( state )
        if IsValid( state.ent ) then
            state.ent:Remove()
        end
    end,

    cases = {
        {
            name = "Should accept the Tickle function",
            func = function( state )
                expect( state.ent.Tickle ).to.exist()
                expect( function() state.ent:Tickle() end ).to.succeed()
                expect( state.ent.wasTickled ).to.beTrue()
            end
        },
        {
            name = "Should not be tickled by default",
            func = function( state )
                expect( state.ent.wasTickled ).to.beFalse()
            end
        },
        {
            name = "Should have the correct model",
            func = function( state )
                expect( state.ent:GetModel() ).to.equal( "materials/ticklemonster/default.mdl" )
            end
        }
    }
}

The beforeEach function created a brand-new Tickle Monster before every test, and the afterEach function deleted it, ensuring a clean test environment for each Test Case.

You'll notice the state variable in that example. The state parameter is just a table that's shared between the before/after funcs and the Test Case function.

You also have access to beforeAll and afterAll, which are self-explanatory. Please note that these two functions do not take a state table.



cleanup

The cleanup function is a lot like afterEach, except it's used only for a specific Test Case.

One common way to use this is to make sure that your test cleans up after itself even if it errors.


For example, say I want to test my WrapperFunc in this file:

-- lua/my_project/wrapper.lua

GlobalFunc = function()
    return "Test"
end

WrapperFunc = function()
    return GlobalFunc()
end

I might write something like this:

{
    name = "Wrapper should call the original function",
    func = function()
        local ogGlobalFunc = GlobalFunc
        local wasCalled = false

        GlobalFunc = function()
            wasCalled = true
        end

        WrapperFunc()

        expect( wasCalled ).to.beTrue()

        GlobalFunc = ogGlobalFunc
    end
}

But consider, what would happen if WrapperFunc errored, or the expectation failed?

GlobalFunc would still be defined as our local function for all future tests, potentially causing them to fail.

Instead, we can use GLuaTest's cleanup function to make our test safer:

-- lua/tests/my_project/wrapper.lua

return {
    groupName = "Wrapper Functions",
    cases = {
        {
            name = "Wrapper should call the original function",

            func = function( state )
                state.GlobalFunc = GlobalFunc
                local wasCalled = false

                GlobalFunc = function()
                    wasCalled = true
                end

                WrapperFunc()

                expect( wasCalled ).to.beTrue()
            end,

            cleanup = function( state )
                GlobalFunc = state.GlobalFunc
            end
        }
    }

}


Now what?

At this point, you might be excited to try GLuaTest. Maybe you already have a test file set up!

But... now what?

Check out this wiki page addressing that very question:

https://github.com/CFC-Servers/GLuaTest/wiki/I-set-up-GLuaTest...-now-what


Troubleshooting 🤔

Solutions to common problems

Does your test output look completely unreadable?

image

Try setting the gluatest_use_ansi convar to 0

Developers 👨‍💻

Information about working with GLuaTest

Interested in making an extension for GLuaTest?

Check out the wiki article outlining the hooks you can use: https://github.com/CFC-Servers/GLuaTest/wiki/Developers