-
Notifications
You must be signed in to change notification settings - Fork 0
/
bimod.py
53 lines (37 loc) · 1.4 KB
/
bimod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
## bimod.py ####################################################################
## identifying bimodal distributions ###########################################
################################################################################
import numpy as np
import scipy.stats as st
if(__name__ == "__main__"):
#hard coded data generation
data = np.random.normal(-3, 1, size = 1000)
data[600:] = np.random.normal(loc = 3, scale = 2, size=400)
#initialization
mu1 = -1
sigma1 = 1
mu2 = 1
sigma2 = 1
#criterion to stop iteration
epsilon = 0.1
stop = False
while not stop :
#step1
classification = np.zeros(len(data))
classification[st.norm.pdf(data, mu1, sigma1) > st.norm.pdf(data, mu2, sigma2)] = 1
mu1_old, mu2_old, sigma1_old, sigma2_old = mu1, mu2, sigma1, sigma2
#step2
pars1 = st.norm.fit(data[classification == 1])
mu1, sigma1 = pars1
pars2 = st.norm.fit(data[classification == 0])
mu2, sigma2 = pars2
#stopping criterion
stop = ((mu1_old - mu1)**2 + (mu2_old - mu2)**2 +(sigma1_old - sigma1)**2 +(sigma2_old - sigma2)**2) < epsilon
#result
print min(data[classification == 1]), max(data[classification == 1])
print type(pars1), type(pars2)
print pars1
print pars2
print("The first density is gaussian :", mu1, sigma1)
print("The first density is gaussian :", mu2, sigma2)
print("A rate of ", np.mean(classification), "is classified in the first density")