-
Notifications
You must be signed in to change notification settings - Fork 52
/
board.go
599 lines (512 loc) · 16.5 KB
/
board.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
package rules
import "fmt"
// BoardState represents the internal state of a game board.
// NOTE: use NewBoardState to construct these to ensure fields are initialized
// correctly and that tests are resilient to changes to this type.
type BoardState struct {
Turn int
Height int
Width int
Food []Point
Snakes []Snake
Hazards []Point
// Generic game-level state for maps and rules stages to persist data between turns.
GameState map[string]string
// Numeric state keyed to specific points, also persisted between turns.
PointState map[Point]int
}
type Point struct {
X int `json:"X"`
Y int `json:"Y"`
TTL int `json:"TTL,omitempty"`
Value int `json:"Value,omitempty"`
}
// Makes it easier to copy sample points out of Go logs and test failures.
func (p Point) GoString() string {
if p.TTL != 0 || p.Value != 0 {
return fmt.Sprintf("{X:%d, Y:%d, TTL:%d, Value:%d}", p.X, p.Y, p.TTL, p.Value)
}
return fmt.Sprintf("{X:%d, Y:%d}", p.X, p.Y)
}
type Snake struct {
ID string
Body []Point
Health int
EliminatedCause string
EliminatedOnTurn int
EliminatedBy string
}
// NewBoardState returns an empty but fully initialized BoardState
func NewBoardState(width, height int) *BoardState {
return &BoardState{
Turn: 0,
Height: height,
Width: width,
Food: []Point{},
Snakes: []Snake{},
Hazards: []Point{},
GameState: map[string]string{},
PointState: map[Point]int{},
}
}
// Clone returns a deep copy of prevState that can be safely modified without affecting the original
func (prevState *BoardState) Clone() *BoardState {
nextState := &BoardState{
Turn: prevState.Turn,
Height: prevState.Height,
Width: prevState.Width,
Food: append([]Point{}, prevState.Food...),
Snakes: make([]Snake, len(prevState.Snakes)),
Hazards: append([]Point{}, prevState.Hazards...),
GameState: make(map[string]string, len(prevState.GameState)),
PointState: make(map[Point]int, len(prevState.PointState)),
}
for key, value := range prevState.GameState {
nextState.GameState[key] = value
}
for key, value := range prevState.PointState {
nextState.PointState[key] = value
}
for i := 0; i < len(prevState.Snakes); i++ {
nextState.Snakes[i].ID = prevState.Snakes[i].ID
nextState.Snakes[i].Health = prevState.Snakes[i].Health
nextState.Snakes[i].Body = append([]Point{}, prevState.Snakes[i].Body...)
nextState.Snakes[i].EliminatedCause = prevState.Snakes[i].EliminatedCause
nextState.Snakes[i].EliminatedOnTurn = prevState.Snakes[i].EliminatedOnTurn
nextState.Snakes[i].EliminatedBy = prevState.Snakes[i].EliminatedBy
}
return nextState
}
// Builder method to set Turn and return the modified BoardState.
func (state *BoardState) WithTurn(turn int) *BoardState {
state.Turn = turn
return state
}
// Builder method to set Food and return the modified BoardState.
func (state *BoardState) WithFood(food []Point) *BoardState {
state.Food = food
return state
}
// Builder method to set Hazards and return the modified BoardState.
func (state *BoardState) WithHazards(hazards []Point) *BoardState {
state.Hazards = hazards
return state
}
// Builder method to set Snakes and return the modified BoardState.
func (state *BoardState) WithSnakes(snakes []Snake) *BoardState {
state.Snakes = snakes
return state
}
// Builder method to set State and return the modified BoardState.
func (state *BoardState) WithGameState(gameState map[string]string) *BoardState {
state.GameState = gameState
return state
}
// Builder method to set PointState and return the modified BoardState.
func (state *BoardState) WithPointState(pointState map[Point]int) *BoardState {
state.PointState = pointState
return state
}
// CreateDefaultBoardState is a convenience function for fully initializing a
// "default" board state with snakes and food.
// In a real game, the engine may generate the board without calling this
// function, or customize the results based on game-specific settings.
func CreateDefaultBoardState(rand Rand, width int, height int, snakeIDs []string) (*BoardState, error) {
initialBoardState := NewBoardState(width, height)
err := PlaceSnakesAutomatically(rand, initialBoardState, snakeIDs)
if err != nil {
return nil, err
}
err = PlaceFoodAutomatically(rand, initialBoardState)
if err != nil {
return nil, err
}
return initialBoardState, nil
}
// PlaceSnakesAutomatically initializes the array of snakes based on the provided snake IDs and the size of the board.
func PlaceSnakesAutomatically(rand Rand, b *BoardState, snakeIDs []string) error {
if isSquareBoard(b) {
// we don't allow > 8 snakes on very small boards
if len(snakeIDs) > 8 && b.Width < BoardSizeSmall {
return ErrorTooManySnakes
}
// we can do fixed placement for up to 8 snakes on minimum sized boards
if len(snakeIDs) <= 8 && b.Width >= BoardSizeSmall {
return PlaceSnakesFixed(rand, b, snakeIDs)
}
// for > 8 snakes, we can do distributed placement
if b.Width >= BoardSizeMedium {
return PlaceManySnakesDistributed(rand, b, snakeIDs)
}
}
// last resort for unexpected board sizes we'll just randomly place snakes
return PlaceSnakesRandomly(rand, b, snakeIDs)
}
func PlaceSnakesFixed(rand Rand, b *BoardState, snakeIDs []string) error {
b.Snakes = make([]Snake, len(snakeIDs))
for i := 0; i < len(snakeIDs); i++ {
b.Snakes[i] = Snake{
ID: snakeIDs[i],
Health: SnakeMaxHealth,
}
}
// Create start 8 points
mn, md, mx := 1, (b.Width-1)/2, b.Width-2
cornerPoints := []Point{
{X: mn, Y: mn},
{X: mn, Y: mx},
{X: mx, Y: mn},
{X: mx, Y: mx},
}
cardinalPoints := []Point{
{X: mn, Y: md},
{X: md, Y: mn},
{X: md, Y: mx},
{X: mx, Y: md},
}
// Sanity check
if len(b.Snakes) > (len(cornerPoints) + len(cardinalPoints)) {
return ErrorTooManySnakes
}
// Randomly order them
rand.Shuffle(len(cornerPoints), func(i int, j int) {
cornerPoints[i], cornerPoints[j] = cornerPoints[j], cornerPoints[i]
})
rand.Shuffle(len(cardinalPoints), func(i int, j int) {
cardinalPoints[i], cardinalPoints[j] = cardinalPoints[j], cardinalPoints[i]
})
var startPoints []Point
if rand.Intn(2) == 0 {
startPoints = append(startPoints, cornerPoints...)
startPoints = append(startPoints, cardinalPoints...)
} else {
startPoints = append(startPoints, cardinalPoints...)
startPoints = append(startPoints, cornerPoints...)
}
// Assign to snakes in order given
for i := 0; i < len(b.Snakes); i++ {
for j := 0; j < SnakeStartSize; j++ {
b.Snakes[i].Body = append(b.Snakes[i].Body, startPoints[i])
}
}
return nil
}
// PlaceManySnakesDistributed is a placement algorithm that works for up to 16 snakes
// It is intended for use on large boards and distributes snakes relatively evenly,
// and randomly, across quadrants.
func PlaceManySnakesDistributed(rand Rand, b *BoardState, snakeIDs []string) error {
// this placement algorithm supports up to 16 snakes
if len(snakeIDs) > 16 {
return ErrorTooManySnakes
}
b.Snakes = make([]Snake, len(snakeIDs))
for i := 0; i < len(snakeIDs); i++ {
b.Snakes[i] = Snake{
ID: snakeIDs[i],
Health: SnakeMaxHealth,
}
}
quadHSpace := b.Width / 2
quadVSpace := b.Height / 2
hOffset := quadHSpace / 3
vOffset := quadVSpace / 3
quads := make([]RandomPositionBucket, 4)
// quad 1
quads[0] = RandomPositionBucket{}
quads[0].Fill(
Point{X: hOffset, Y: vOffset},
Point{X: quadHSpace - hOffset, Y: vOffset},
Point{X: hOffset, Y: quadVSpace - vOffset},
Point{X: quadHSpace - hOffset, Y: quadVSpace - vOffset},
)
// quad 2
quads[1] = RandomPositionBucket{}
for _, p := range quads[0].positions {
quads[1].Fill(Point{X: b.Width - p.X - 1, Y: p.Y})
}
// quad 3
quads[2] = RandomPositionBucket{}
for _, p := range quads[0].positions {
quads[2].Fill(Point{X: p.X, Y: b.Height - p.Y - 1})
}
// quad 4
quads[3] = RandomPositionBucket{}
for _, p := range quads[0].positions {
quads[3].Fill(Point{X: b.Width - p.X - 1, Y: b.Height - p.Y - 1})
}
currentQuad := rand.Intn(4) // randomly pick a quadrant to start from
// evenly distribute snakes across quadrants, randomly, by rotating through the quadrants
for i := 0; i < len(b.Snakes); i++ {
p, err := quads[currentQuad].Take(rand)
if err != nil {
return err
}
for j := 0; j < SnakeStartSize; j++ {
b.Snakes[i].Body = append(b.Snakes[i].Body, p)
}
currentQuad = (currentQuad + 1) % 4
}
return nil
}
type RandomPositionBucket struct {
positions []Point
}
func (rpb *RandomPositionBucket) Fill(p ...Point) {
rpb.positions = append(rpb.positions, p...)
}
func (rpb *RandomPositionBucket) Take(rand Rand) (Point, error) {
if len(rpb.positions) == 0 {
return Point{}, RulesetError("no more positions available")
}
// randomly pick the next position
idx := rand.Intn(len(rpb.positions))
p := rpb.positions[idx]
// remove that position from the list using the fast slice removal method
rpb.positions[idx] = rpb.positions[len(rpb.positions)-1]
rpb.positions = rpb.positions[:len(rpb.positions)-1]
return p, nil
}
func PlaceSnakesRandomly(rand Rand, b *BoardState, snakeIDs []string) error {
b.Snakes = make([]Snake, len(snakeIDs))
for i := 0; i < len(snakeIDs); i++ {
b.Snakes[i] = Snake{
ID: snakeIDs[i],
Health: SnakeMaxHealth,
}
}
for i := 0; i < len(b.Snakes); i++ {
unoccupiedPoints := removeCenterCoord(b, GetEvenUnoccupiedPoints(b))
if len(unoccupiedPoints) <= 0 {
return ErrorNoRoomForSnake
}
p := unoccupiedPoints[rand.Intn(len(unoccupiedPoints))]
for j := 0; j < SnakeStartSize; j++ {
b.Snakes[i].Body = append(b.Snakes[i].Body, p)
}
}
return nil
}
// Adds all snakes without body coordinates to the board.
// This allows GameMaps to access the list of snakes and perform initial placement.
func InitializeSnakes(b *BoardState, snakeIDs []string) {
b.Snakes = make([]Snake, len(snakeIDs))
for i := 0; i < len(snakeIDs); i++ {
b.Snakes[i] = Snake{
ID: snakeIDs[i],
Health: SnakeMaxHealth,
Body: []Point{},
}
}
}
// PlaceSnake adds a snake to the board with the given ID and body coordinates.
func PlaceSnake(b *BoardState, snakeID string, body []Point) error {
// Update an existing snake that already has a body
for index, snake := range b.Snakes {
if snake.ID == snakeID {
b.Snakes[index].Body = body
return nil
}
}
// Add a new snake
b.Snakes = append(b.Snakes, Snake{
ID: snakeID,
Health: SnakeMaxHealth,
Body: body,
})
return nil
}
// PlaceFoodAutomatically initializes the array of food based on the size of the board and the number of snakes.
func PlaceFoodAutomatically(rand Rand, b *BoardState) error {
if isSquareBoard(b) && b.Width >= BoardSizeSmall {
return PlaceFoodFixed(rand, b)
}
return PlaceFoodRandomly(rand, b, len(b.Snakes))
}
// Deprecated: will be replaced by maps.PlaceFoodFixed
func PlaceFoodFixed(rand Rand, b *BoardState) error {
centerCoord := Point{X: (b.Width - 1) / 2, Y: (b.Height - 1) / 2}
isSmallBoard := b.Width*b.Height < BoardSizeMedium*BoardSizeMedium
// Up to 4 snakes can be placed such that food is nearby on small boards.
// Otherwise, we skip this and only try to place food in the center.
if len(b.Snakes) <= 4 || !isSmallBoard {
// Place 1 food within exactly 2 moves of each snake, but never towards the center or in a corner
for i := 0; i < len(b.Snakes); i++ {
snakeHead := b.Snakes[i].Body[0]
possibleFoodLocations := []Point{
{X: snakeHead.X - 1, Y: snakeHead.Y - 1},
{X: snakeHead.X - 1, Y: snakeHead.Y + 1},
{X: snakeHead.X + 1, Y: snakeHead.Y - 1},
{X: snakeHead.X + 1, Y: snakeHead.Y + 1},
}
// Remove any invalid/unwanted positions
availableFoodLocations := []Point{}
for _, p := range possibleFoodLocations {
// Don't place in the center
if centerCoord == p {
continue
}
// Ignore points already occupied by food
isOccupiedAlready := false
for _, food := range b.Food {
if food.X == p.X && food.Y == p.Y {
isOccupiedAlready = true
break
}
}
if isOccupiedAlready {
continue
}
// Food must be further than snake from center on at least one axis
isAwayFromCenter := false
if p.X < snakeHead.X && snakeHead.X < centerCoord.X {
isAwayFromCenter = true
} else if centerCoord.X < snakeHead.X && snakeHead.X < p.X {
isAwayFromCenter = true
} else if p.Y < snakeHead.Y && snakeHead.Y < centerCoord.Y {
isAwayFromCenter = true
} else if centerCoord.Y < snakeHead.Y && snakeHead.Y < p.Y {
isAwayFromCenter = true
}
if !isAwayFromCenter {
continue
}
// Don't spawn food in corners
if (p.X == 0 || p.X == (b.Width-1)) && (p.Y == 0 || p.Y == (b.Height-1)) {
continue
}
availableFoodLocations = append(availableFoodLocations, p)
}
if len(availableFoodLocations) <= 0 {
return ErrorNoRoomForFood
}
// Select randomly from available locations
placedFood := availableFoodLocations[rand.Intn(len(availableFoodLocations))]
b.Food = append(b.Food, placedFood)
}
}
// Finally, always place 1 food in center of board for dramatic purposes
isCenterOccupied := true
unoccupiedPoints := GetUnoccupiedPoints(b, true, false)
for _, point := range unoccupiedPoints {
if point == centerCoord {
isCenterOccupied = false
break
}
}
if isCenterOccupied {
return ErrorNoRoomForFood
}
b.Food = append(b.Food, centerCoord)
return nil
}
// PlaceFoodRandomly adds up to n new food to the board in random unoccupied squares
func PlaceFoodRandomly(rand Rand, b *BoardState, n int) error {
for i := 0; i < n; i++ {
unoccupiedPoints := GetUnoccupiedPoints(b, false, false)
if len(unoccupiedPoints) > 0 {
newFood := unoccupiedPoints[rand.Intn(len(unoccupiedPoints))]
b.Food = append(b.Food, newFood)
}
}
return nil
}
func absInt(n int) int {
if n < 0 {
return -n
}
return n
}
func GetEvenUnoccupiedPoints(b *BoardState) []Point {
// Start by getting unoccupied points
unoccupiedPoints := GetUnoccupiedPoints(b, true, false)
// Create a new array to hold points that are even
evenUnoccupiedPoints := []Point{}
for _, point := range unoccupiedPoints {
if ((point.X + point.Y) % 2) == 0 {
evenUnoccupiedPoints = append(evenUnoccupiedPoints, point)
}
}
return evenUnoccupiedPoints
}
// removeCenterCoord filters out the board's center point from a list of points.
func removeCenterCoord(b *BoardState, points []Point) []Point {
centerCoord := Point{X: (b.Width - 1) / 2, Y: (b.Height - 1) / 2}
var noCenterPoints []Point
for _, p := range points {
if p != centerCoord {
noCenterPoints = append(noCenterPoints, p)
}
}
return noCenterPoints
}
func GetUnoccupiedPoints(b *BoardState, includePossibleMoves bool, includeHazards bool) []Point {
pointIsOccupied := map[int]map[int]bool{}
for _, p := range b.Food {
if _, xExists := pointIsOccupied[p.X]; !xExists {
pointIsOccupied[p.X] = map[int]bool{}
}
pointIsOccupied[p.X][p.Y] = true
}
for _, snake := range b.Snakes {
if snake.EliminatedCause != NotEliminated {
continue
}
for i, p := range snake.Body {
if _, xExists := pointIsOccupied[p.X]; !xExists {
pointIsOccupied[p.X] = map[int]bool{}
}
pointIsOccupied[p.X][p.Y] = true
if i == 0 && !includePossibleMoves {
nextMovePoints := []Point{
{X: p.X - 1, Y: p.Y},
{X: p.X + 1, Y: p.Y},
{X: p.X, Y: p.Y - 1},
{X: p.X, Y: p.Y + 1},
}
for _, nextP := range nextMovePoints {
if _, xExists := pointIsOccupied[nextP.X]; !xExists {
pointIsOccupied[nextP.X] = map[int]bool{}
}
pointIsOccupied[nextP.X][nextP.Y] = true
}
}
}
}
if includeHazards {
for _, p := range b.Hazards {
if _, xExists := pointIsOccupied[p.X]; !xExists {
pointIsOccupied[p.X] = map[int]bool{}
}
pointIsOccupied[p.X][p.Y] = true
}
}
unoccupiedPoints := []Point{}
for x := 0; x < b.Width; x++ {
for y := 0; y < b.Height; y++ {
if _, xExists := pointIsOccupied[x]; xExists {
if isOccupied, yExists := pointIsOccupied[x][y]; yExists {
if isOccupied {
continue
}
}
}
unoccupiedPoints = append(unoccupiedPoints, Point{X: x, Y: y})
}
}
return unoccupiedPoints
}
func getDistanceBetweenPoints(a, b Point) int {
return absInt(a.X-b.X) + absInt(a.Y-b.Y)
}
func isSquareBoard(b *BoardState) bool {
return b.Width == b.Height
}
// EliminateSnake updates a snake's state to reflect that it was eliminated.
// - "cause" identifies what type of event caused the snake to be eliminated
// - "by" identifies which snake (if any, use empty string "" if none) eliminated the snake.
// - "turn" is the turn number that this snake was eliminated on.
func EliminateSnake(s *Snake, cause, by string, turn int) {
s.EliminatedCause = cause
s.EliminatedBy = by
s.EliminatedOnTurn = turn
}