-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
127 lines (84 loc) · 2.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import math
import numpy as np
def mean_precision(eval_segm, gt_segm):
check_size(eval_segm, gt_segm)
cl, n_cl = extract_classes(gt_segm)
#print(n_cl)
eval_mask, gt_mask = extract_both_masks(eval_segm, gt_segm, cl, n_cl)
mAP = [0] * n_cl
for i, c in enumerate(cl):
curr_eval_mask = eval_mask[i, :, :]
curr_gt_mask = gt_mask[i, :, :]
n_ii = np.sum(np.logical_and(curr_eval_mask, curr_gt_mask))
n_ij = np.sum(curr_eval_mask)
val = n_ii / float(n_ij)
if math.isnan(val):
mAP[i] = 0.
else:
mAP[i] = val
# print(mAP)
return mAP
def mean_IU(eval_segm, gt_segm):
'''
(1/n_cl) * sum_i(n_ii / (t_i + sum_j(n_ji) - n_ii))
'''
check_size(eval_segm, gt_segm)
cl, n_cl = union_classes(eval_segm, gt_segm)
_, n_cl_gt = extract_classes(gt_segm)
eval_mask, gt_mask = extract_both_masks(eval_segm, gt_segm, cl, n_cl)
IU = list([0]) * n_cl
for i, c in enumerate(cl):
curr_eval_mask = eval_mask[i, :, :]
curr_gt_mask = gt_mask[i, :, :]
if (np.sum(curr_eval_mask) == 0) or (np.sum(curr_gt_mask) == 0):
continue
n_ii = np.sum(np.logical_and(curr_eval_mask, curr_gt_mask))
t_i = np.sum(curr_gt_mask)
n_ij = np.sum(curr_eval_mask)
IU[i] = n_ii / (t_i + n_ij - n_ii)
return IU
'''
Auxiliary functions used during evaluation.
'''
def get_pixel_area(segm):
return segm.shape[0] * segm.shape[1]
def extract_both_masks(eval_segm, gt_segm, cl, n_cl):
eval_mask = extract_masks(eval_segm, cl, n_cl)
gt_mask = extract_masks(gt_segm, cl, n_cl)
return eval_mask, gt_mask
def extract_classes(segm):
cl = np.unique(segm)
n_cl = len(cl)
return cl, n_cl
def union_classes(eval_segm, gt_segm):
eval_cl, _ = extract_classes(eval_segm)
gt_cl, _ = extract_classes(gt_segm)
cl = np.union1d(eval_cl, gt_cl)
n_cl = len(cl)
return cl, n_cl
def extract_masks(segm, cl, n_cl):
h, w = segm_size(segm)
masks = np.zeros((n_cl, h, w))
for i, c in enumerate(cl):
masks[i, :, :] = segm == c
return masks
def segm_size(segm):
try:
height = segm.shape[0]
width = segm.shape[1]
except IndexError:
raise
return height, width
def check_size(eval_segm, gt_segm):
h_e, w_e = segm_size(eval_segm)
h_g, w_g = segm_size(gt_segm)
if (h_e != h_g) or (w_e != w_g):
raise EvalSegErr("DiffDim: Different dimensions of matrices!")
'''
Exceptions
'''
class EvalSegErr(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)