-
Notifications
You must be signed in to change notification settings - Fork 0
/
Report_.htm
executable file
·522 lines (419 loc) · 37 KB
/
Report_.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Analyzing the Business Value of IT in Organizations</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Analyzing the Business Value of IT in Organizations</h1>
<h2>Case Study: Digitized Platforms, Cloud Reliance and Business Agility</h2>
<p>Research for analyzing the business value of IT usually relies on survey firm-level data that includes questions about uses of IT, measurements of factors that strengthen IT capabilities and measurements of firm performance.</p>
<p>The research process involves a series of steps for ensuring rigour before and after data collection. This case study presents basic data manipulations and statistical analyses once the data is collected. We use the program R.</p>
<p>The survey targeted C-level executives of companies in three regions: North America, West Europe, Asia Pacific.The survey was administered between mid-September, 2012 through mid-January, 2013. A total of 4,872 respondents received the survey; 372 completed the survey. We then tested the responses in order to ensure high quality. The results in this case study are based on the cleaned set of completed surveys, consisting of 307 completed surveys</p>
<p>The survey contains more that 100 variables. In this case study, we will be working with a subset of indicators. </p>
<h3>STEPS</h3>
<h4>Step 1. Load full dataset</h4>
<p>Download full dataset into your folder. </p>
<p>Set that respective folder as the working directory, for example:</p>
<pre><code class="r">setwd("C:/GIT_R/eLab_R/Paper Digitized")
</code></pre>
<p>Given that the dataset is in CSV format (i.e. a “foreign” format to R), we need to import the data into R:</p>
<pre><code class="r">library(foreign)
ds_full <- read.csv("ds_full.csv", header = TRUE)
</code></pre>
<p>Since we will be working with a subset of all the variables contained in the original dataset “ds_full”, we have to extract those indicators and create a “sample” dataset that we called “dsample”“</p>
<pre><code class="r">dsample <- ds_full[, c("rid", "s1f", "s1g", "s2", "q22_1_2", "q24_1", "q24_2",
"q24_3", "q24_5", "q24_6", "q39_10", "q39_1", "q39_2", "q39_3", "q24_8",
"q39_7", "q39_8", "q39_9")]
</code></pre>
<p>We can have an idea of how the data looks like by calling a function that shows the first few rows of the Data Frame:</p>
<pre><code class="r">head(dsample)
</code></pre>
<pre><code>## rid s1f s1g s2 q22_1_2 q24_1 q24_2 q24_3 q24_5 q24_6 q39_10
## 1 019, Respondent 14 4 1 10 4 4 4 2 2 4
## 2 039, Respondent 12 7 1 50 2 4 4 4 4 4
## 3 006, Respondent 12 3 1 10 3 4 4 4 4 4
## 4 053, Respondent 12 1 1 1 4 4 4 3 2 3
## 5 061, Respondent 12 1 3 5 2 4 4 4 3 3
## 6 066, Respondent 12 1 3 40 4 4 4 4 3 3
## q39_1 q39_2 q39_3 q24_8 q39_7 q39_8 q39_9
## 1 3 2 4 4 4 4 4
## 2 3 4 3 5 4 4 4
## 3 4 4 4 5 3 4 5
## 4 3 3 4 3 3 3 3
## 5 4 4 4 4 3 3 3
## 6 3 3 4 4 4 4 3
</code></pre>
<h4>Step 2. Basic Data Demographics</h4>
<p>Usually the empirical work requires "controling” for some firms characteristics. Two important controls in our sample dataset are: </p>
<h5>Firm Size</h5>
<p>This is captured using a variable (s1g) that creates different categories of the size of the workforce, giving then numerical names (between 1 and 6 in this case):</p>
<p>\[
1: <50
\]
\[
2: 50 - 249
\]
\[
3: 250 - 999
\]
\[
4: 1,000 - 9,999
\]
\[
7: 10,000 - 49,999
\]
\[
5: 50,000 - 99,999
\]
\[
6: >100,000
\]</p>
<p>*Note: the codes (1-6) are not necessarily in order but they are just names (i.e. nominal data)</p>
<p>The frequency of each category (i.e. the number of observation for each category), can be visualized using an histogram:</p>
<pre><code class="r">hist(dsample[, c("s1g")], main = "Number of firms in the Sample according to size",
xlab = "Workforce Size Categories")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<h5>Firm Industry</h5>
<p>The industry variable (s1f) creates different categories and also gives numerical names to those categories (note: the number are only names and may not be in order):</p>
<p>\[
1: Agriculture, forestry and fishing (A)
\]
\[
2: Mining and quarrying (B)
\]
\[
3: Manufacturing (C)
\]
\[
4: Electricity, gas, steam and air-conditioning supply (D)
\]
\[
5: Water supply, sewerage, waste management and remediation (E)
\]
\[
6: Construction (F)
\]
\[
7: Wholesale and retail trade (F)
\]
\[
8: Transportation and storage (G)
\]
\[
9: Accommodation and food service activities (I)
\]
\[
10: Publishing, audiovisual and broadcasting activities (JA)
\]
\[
11: Telecommunications (JB)
\]
\[
12: IT and other information services (JC)
\]
\[
13: Financial and insurance activities
\]
\[
14: Real estate activities (L)
\]
\[
15: Legal, accounting, management, architecture,engineering, .. activities (MA)
\]
\[
16: Scientific research and development (MB)
\]
\[
17: Other professional, scientific and technical activities (MC)
\]
\[
18: Administrative and support service activities (N)
\]
\[
19: Public administration and defence, compulsory social security (O)
\]
\[
20: Education (P)
\]
\[
21: Human health services, residential care and social work activities (Q)
\]
\[
22: Arts, entertainment and recreation (R)
\]</p>
<p>We can also generate an histogram. However, some of these categories only have few observations. Let's see:</p>
<pre><code class="r">library(gmodels)
</code></pre>
<pre><code>## Warning: package 'gmodels' was built under R version 3.0.2
</code></pre>
<pre><code class="r">dsample$ones <- 1 #This variable is useful for generating the table
CrossTable(dsample$s1f, dsample$ones, digits = 2)
</code></pre>
<pre><code>##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 307
##
##
## | dsample$ones
## dsample$s1f | 1 | Row Total |
## -------------|-----------|-----------|
## 1 | 2 | 2 |
## | 0.01 | |
## -------------|-----------|-----------|
## 2 | 3 | 3 |
## | 0.01 | |
## -------------|-----------|-----------|
## 3 | 33 | 33 |
## | 0.11 | |
## -------------|-----------|-----------|
## 4 | 3 | 3 |
## | 0.01 | |
## -------------|-----------|-----------|
## 5 | 1 | 1 |
## | 0.00 | |
## -------------|-----------|-----------|
## 7 | 15 | 15 |
## | 0.05 | |
## -------------|-----------|-----------|
## 8 | 7 | 7 |
## | 0.02 | |
## -------------|-----------|-----------|
## 9 | 1 | 1 |
## | 0.00 | |
## -------------|-----------|-----------|
## 10 | 6 | 6 |
## | 0.02 | |
## -------------|-----------|-----------|
## 11 | 23 | 23 |
## | 0.07 | |
## -------------|-----------|-----------|
## 12 | 72 | 72 |
## | 0.23 | |
## -------------|-----------|-----------|
## 13 | 48 | 48 |
## | 0.16 | |
## -------------|-----------|-----------|
## 14 | 5 | 5 |
## | 0.02 | |
## -------------|-----------|-----------|
## 15 | 5 | 5 |
## | 0.02 | |
## -------------|-----------|-----------|
## 16 | 4 | 4 |
## | 0.01 | |
## -------------|-----------|-----------|
## 17 | 7 | 7 |
## | 0.02 | |
## -------------|-----------|-----------|
## 18 | 2 | 2 |
## | 0.01 | |
## -------------|-----------|-----------|
## 19 | 4 | 4 |
## | 0.01 | |
## -------------|-----------|-----------|
## 20 | 14 | 14 |
## | 0.05 | |
## -------------|-----------|-----------|
## 21 | 29 | 29 |
## | 0.09 | |
## -------------|-----------|-----------|
## 22 | 7 | 7 |
## | 0.02 | |
## -------------|-----------|-----------|
## 23 | 16 | 16 |
## | 0.05 | |
## -------------|-----------|-----------|
## Column Total | 307 | 307 |
## -------------|-----------|-----------|
##
##
</code></pre>
<p>Therefore, in order to see the histogram, we will group some of the categories with fewer observations into one generic “Other” category. The industries with more observations are 3, 11, 12 and 13. We will put all the rest in a category “other” and give it the name “25”. The commands below creates a variable in the dataset that is similar to s1f but recodes the categories in order to include the new “Other-25” category. The code also renames the industry groups in the new variable from numbers into text descriptions: </p>
<pre><code class="r">dsample$s1f_other <- ifelse(dsample$s1f == 3 | dsample$s1f == 11 | dsample$s1f ==
12 | dsample$s1f == 13, dsample$s1f, 25)
# Re-label into text (industry description):
dsample$s1f_other <- factor(dsample$s1f_other, levels = c(3, 11, 12, 13, 25),
labels = c("Manufacturing", "Telecom", "IT", "Finance", "Other"))
</code></pre>
<p>Now we can plot the histogram using the new created variable (the command 'barplot' is similar to 'hist' and it is useful when the categories are string data):</p>
<pre><code class="r">barplot(table(dsample[, c("s1f_other")]), main = "Number of firms in the Sample according to Industry")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-8"/> </p>
<h4>Step 3. Generation of new variables</h4>
<p>The analysis requires the generation of Dummy variables for each category in firm size (s1g) and industry (s1f):</p>
<h5>Firm Size (Intercept: >50,000):</h5>
<pre><code class="r">dsample$firm_size1 <- ifelse(dsample$s1g == 1 | dsample$s1g == 2, 1, 0) # <50 & 50-250
dsample$firm_size2 <- ifelse(dsample$s1g == 3, 1, 0) # 250 - 1,000
dsample$firm_size3 <- ifelse(dsample$s1g == 4, 1, 0) # 1,000 - 10,000
dsample$firm_size4 <- ifelse(dsample$s1g == 7, 1, 0) # 10,000 - 50,000
</code></pre>
<h5>Industry (Intercept: “Other”“ sectors):</h5>
<pre><code class="r">dsample$industry1 <- ifelse(dsample$s1f == 11, 1, 0) # Industry: Telecom
dsample$industry2 <- ifelse(dsample$s1f == 12, 1, 0) # Industry: IT
dsample$industry3 <- ifelse(dsample$s1f == 13, 1, 0) # Industry: Finance
dsample$industry4 <- ifelse(dsample$s1f == 3, 1, 0) # Industry: Manufacturing
</code></pre>
<h4>Step 4. Descriptive Statistics</h4>
<p>These are the basic statistics for firms' reliance on Cloud-based services (variable: q22_1_2):</p>
<p>*Note: some commands are based on packages generated by other people. Here, we first installed the "psych” package (run: install.packages(“psych”)) </p>
<pre><code class="r">library(psych)
</code></pre>
<pre><code>## Warning: package 'psych' was built under R version 3.0.2
</code></pre>
<pre><code class="r">describe(dsample$q22_1_2)
</code></pre>
<pre><code>## var n mean sd median trimmed mad min max range skew kurtosis
## 1 1 307 13.68 17.15 10 10.19 10.38 0 100 100 2.38 6.54
## se
## 1 0.98
</code></pre>
<h4>Step 5. Empirical Analysis</h4>
<p>It is possible to write equations (via LaTeX): </p>
<p>There are inline equations such as: \( y_i = \alpha + \beta x_i + e_i \).</p>
<p>We will continue with more…..</p>
</body>
</html>