forked from Cornell-RelaxML/QuIP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
quant_cuda_kernel.cu
244 lines (216 loc) · 8.34 KB
/
quant_cuda_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <torch/all.h>
#include <torch/python.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
template <typename scalar_t>
__global__ void VecQuant3MatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int height,
int width
);
__global__ void VecQuant3MatMulKernelFaster(
const half2* __restrict__ vec,
const int* __restrict__ mat,
float* __restrict__ mul,
const float* __restrict__ scales,
const float* __restrict__ zeros,
int height,
int width
);
const int BLOCKWIDTH = 256;
const int BLOCKHEIGHT = 24;
void vecquant3matmul_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int height = mat.size(0);
int width = mat.size(1);
dim3 blocks(
(height + BLOCKHEIGHT - 1) / BLOCKHEIGHT,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant3matmul_cuda", ([&] {
VecQuant3MatMulKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<scalar_t>(),
height, width
);
})
);
}
void vecquant3matmul_faster_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int height = mat.size(0);
int width = mat.size(1);
dim3 blocks(
(height + BLOCKHEIGHT - 1) / BLOCKHEIGHT,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
VecQuant3MatMulKernelFaster<<<blocks, threads>>>(
(half2*) vec.data_ptr(),
mat.data_ptr<int>(),
mul.data_ptr<float>(),
scales.data_ptr<float>(),
zeros.data_ptr<float>(),
height, width
);
}
__device__ inline unsigned int as_unsigned(int i) {
return *reinterpret_cast<unsigned int*>(&i);
}
template <typename scalar_t>
__global__ void VecQuant3MatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int height,
int width
) {
int row = BLOCKHEIGHT * blockIdx.x;
int col = BLOCKWIDTH * blockIdx.y + threadIdx.x;
__shared__ scalar_t blockvec[BLOCKWIDTH];
blockvec[threadIdx.x] = vec[(row / BLOCKHEIGHT) * BLOCKWIDTH + threadIdx.x];
__syncthreads();
scalar_t scale = scales[col];
scalar_t zero = zeros[col];
scalar_t res = 0;
int i = width * row + col;
int k = 0;
unsigned int tmp1;
unsigned int tmp2;
unsigned int tmp;
while (k < BLOCKWIDTH) {
tmp1 = as_unsigned(mat[i]);
res += (scale * scalar_t((tmp1 >> 0) & 0x7) - zero) * blockvec[k + 0];
res += (scale * scalar_t((tmp1 >> 3) & 0x7) - zero) * blockvec[k + 1];
res += (scale * scalar_t((tmp1 >> 6) & 0x7) - zero) * blockvec[k + 2];
res += (scale * scalar_t((tmp1 >> 9) & 0x7) - zero) * blockvec[k + 3];
res += (scale * scalar_t((tmp1 >> 12) & 0x7) - zero) * blockvec[k + 4];
res += (scale * scalar_t((tmp1 >> 15) & 0x7) - zero) * blockvec[k + 5];
res += (scale * scalar_t((tmp1 >> 18) & 0x7) - zero) * blockvec[k + 6];
res += (scale * scalar_t((tmp1 >> 21) & 0x7) - zero) * blockvec[k + 7];
res += (scale * scalar_t((tmp1 >> 24) & 0x7) - zero) * blockvec[k + 8];
res += (scale * scalar_t((tmp1 >> 27) & 0x7) - zero) * blockvec[k + 9];
i += width;
tmp2 = as_unsigned(mat[i]);
tmp = (tmp1 >> 30) | ((tmp2 << 2) & 0x4);
tmp2 >>= 1;
res += (scale * scalar_t(tmp) - zero) * blockvec[k + 10];
k += 11;
res += (scale * scalar_t((tmp2 >> 0) & 0x7) - zero) * blockvec[k + 0];
res += (scale * scalar_t((tmp2 >> 3) & 0x7) - zero) * blockvec[k + 1];
res += (scale * scalar_t((tmp2 >> 6) & 0x7) - zero) * blockvec[k + 2];
res += (scale * scalar_t((tmp2 >> 9) & 0x7) - zero) * blockvec[k + 3];
res += (scale * scalar_t((tmp2 >> 12) & 0x7) - zero) * blockvec[k + 4];
res += (scale * scalar_t((tmp2 >> 15) & 0x7) - zero) * blockvec[k + 5];
res += (scale * scalar_t((tmp2 >> 18) & 0x7) - zero) * blockvec[k + 6];
res += (scale * scalar_t((tmp2 >> 21) & 0x7) - zero) * blockvec[k + 7];
res += (scale * scalar_t((tmp2 >> 24) & 0x7) - zero) * blockvec[k + 8];
res += (scale * scalar_t((tmp2 >> 27) & 0x7) - zero) * blockvec[k + 9];
i += width;
tmp1 = as_unsigned(mat[i]);
tmp = (tmp2 >> 30) | ((tmp1 << 1) & 0x6);
tmp1 >>= 2;
res += (scale * scalar_t(tmp) - zero) * blockvec[k + 10];
k += 11;
res += (scale * scalar_t((tmp1 >> 0) & 0x7) - zero) * blockvec[k + 0];
res += (scale * scalar_t((tmp1 >> 3) & 0x7) - zero) * blockvec[k + 1];
res += (scale * scalar_t((tmp1 >> 6) & 0x7) - zero) * blockvec[k + 2];
res += (scale * scalar_t((tmp1 >> 9) & 0x7) - zero) * blockvec[k + 3];
res += (scale * scalar_t((tmp1 >> 12) & 0x7) - zero) * blockvec[k + 4];
res += (scale * scalar_t((tmp1 >> 15) & 0x7) - zero) * blockvec[k + 5];
res += (scale * scalar_t((tmp1 >> 18) & 0x7) - zero) * blockvec[k + 6];
res += (scale * scalar_t((tmp1 >> 21) & 0x7) - zero) * blockvec[k + 7];
res += (scale * scalar_t((tmp1 >> 24) & 0x7) - zero) * blockvec[k + 8];
res += (scale * scalar_t((tmp1 >> 27) & 0x7) - zero) * blockvec[k + 9];
i += width;
k += 10;
}
atomicAdd(&mul[col], res);
}
__global__ void VecQuant3MatMulKernelFaster(
const half2* __restrict__ vec,
const int* __restrict__ mat,
float* __restrict__ mul,
const float* __restrict__ scales,
const float* __restrict__ zeros,
int height,
int width
) {
const int blockwidth2 = BLOCKWIDTH / 2;
int row = BLOCKHEIGHT * blockIdx.x;
int col = BLOCKWIDTH * blockIdx.y + threadIdx.x;
__shared__ half2 blockvec[blockwidth2];
if (threadIdx.x < blockwidth2)
blockvec[threadIdx.x] = vec[(row / BLOCKHEIGHT) * blockwidth2 + threadIdx.x];
__shared__ half2 deq2[64][32];
int val = threadIdx.x / 32;
int off = threadIdx.x % 32;
for (; val < 64; val += BLOCKWIDTH / 32) {
deq2[val][off] = __halves2half2(
__int2half_rn(val & 0x7), __int2half_rn(val >> 3)
);
}
half2 scale = __float2half2_rn(scales[col]);
half2 zero = __float2half2_rn(-zeros[col]);
int i = width * row + col;
int k = 0;
float res = 0;
half2 res2;
unsigned int tmp1;
unsigned int tmp2;
unsigned int tmp;
__syncthreads();
while (k < blockwidth2) {
res2 = {};
tmp1 = as_unsigned(mat[i]);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 0) & 0x3f][off], scale, zero), blockvec[k + 0], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 6) & 0x3f][off], scale, zero), blockvec[k + 1], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 12) & 0x3f][off], scale, zero), blockvec[k + 2], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 18) & 0x3f][off], scale, zero), blockvec[k + 3], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 24) & 0x3f][off], scale, zero), blockvec[k + 4], res2);
i += width;
tmp2 = as_unsigned(mat[i]);
tmp = (tmp1 >> 30) | ((tmp2 << 2) & 0x3c);
res2 = __hfma2(__hfma2(deq2[tmp][off], scale, zero), blockvec[k + 5], res2);
tmp2 >>= 4;
k += 6;
res2 = __hfma2(__hfma2(deq2[(tmp2 >> 0) & 0x3f][off], scale, zero), blockvec[k + 0], res2);
res2 = __hfma2(__hfma2(deq2[(tmp2 >> 6) & 0x3f][off], scale, zero), blockvec[k + 1], res2);
res2 = __hfma2(__hfma2(deq2[(tmp2 >> 12) & 0x3f][off], scale, zero), blockvec[k + 2], res2);
res2 = __hfma2(__hfma2(deq2[(tmp2 >> 18) & 0x3f][off], scale, zero), blockvec[k + 3], res2);
i += width;
tmp1 = as_unsigned(mat[i]);
tmp = (tmp2 >> 24) | ((tmp1 << 4) & 0x30);
res2 = __hfma2(__hfma2(deq2[tmp][off], scale, zero), blockvec[k + 4], res2);
tmp1 >>= 2;
k += 5;
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 0) & 0x3f][off], scale, zero), blockvec[k + 0], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 6) & 0x3f][off], scale, zero), blockvec[k + 1], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 12) & 0x3f][off], scale, zero), blockvec[k + 2], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 18) & 0x3f][off], scale, zero), blockvec[k + 3], res2);
res2 = __hfma2(__hfma2(deq2[(tmp1 >> 24) & 0x3f][off], scale, zero), blockvec[k + 4], res2);
i += width;
k += 5;
res += __half2float(res2.x) + __half2float(res2.y);
}
atomicAdd(&mul[col], res);
}