forked from Cornell-RelaxML/QuIP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmethod.py
233 lines (213 loc) · 8.75 KB
/
method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import math
import time
import torch
import torch.nn as nn
import transformers
import primefac
import scipy
import math
from quant import Quantizer
DEBUG = False
def butterfly_factors(n):
pf = list(primefac.primefac(n))
return (math.prod(pf[0::2]), math.prod(pf[1::2]))
def gen_rand_orthos(m,p):
if (p != 2):
return torch.tensor(scipy.stats.special_ortho_group.rvs(p, size=m)).to(torch.float32)
X = torch.zeros(m,2,2)
t = torch.rand(m) * (2 * math.pi)
sin_t = torch.sin(t)
cos_t = torch.cos(t)
X[:,0,0] = cos_t
X[:,1,1] = cos_t
X[:,0,1] = sin_t
X[:,1,0] = -sin_t
return X
# generates a random orthogonal butterfly matrix of dimension n
def gen_rand_ortho_butterfly(n):
return ([gen_rand_orthos(n//p, p) for p in butterfly_factors(n)], torch.randperm(n), torch.randperm(n))
# generates a random orthogonal butterfly matrix of dimension n, without blocking
def gen_rand_ortho_butterfly_noblock(n):
return ([gen_rand_orthos(1, p) for p in butterfly_factors(n)], torch.randperm(n), torch.randperm(n))
# generates a random orthogonal butterfly matrix of dimension n, no permutation, but yes blocking
def gen_rand_ortho_butterfly_nopermute(n):
return ([gen_rand_orthos(n//p, p) for p in butterfly_factors(n)], torch.arange(n), torch.arange(n))
# multiply by a random orthogonal butterfly matrix
def mul_ortho_butterfly(Bpp, x):
(B, p_in, p_out) = Bpp
assert((len(x.shape) == 1) or (len(x.shape) == 2))
orig_dim = 2
if (len(x.shape) == 1):
(n,) = x.shape
x = x.reshape(n,1)
orig_dim = 1
(n,q) = x.shape
x = x[p_in,:]
pfn = tuple(butterfly_factors(n))
for i in range(len(pfn)):
mpfx = math.prod(pfn[0:i])
p = pfn[i]
msfx = math.prod(pfn[(i+1):])
x = x.reshape(mpfx, p, msfx, q).permute(0,2,1,3).reshape(mpfx * msfx, p, q)
x = B[i] @ x
x = x.reshape(mpfx, msfx, p, q).permute(0,2,1,3).reshape(n,q)
x = x[p_out,:]
if (orig_dim == 1):
x = x.reshape(n)
return x
# generates a random orthogonal butterfly matrix of dimension n
# and converts it to a dense matrix
def rand_ortho_butterfly(n):
return mul_ortho_butterfly(gen_rand_ortho_butterfly(n), torch.eye(n))
def rand_ortho_butterfly_noblock(n):
return mul_ortho_butterfly(gen_rand_ortho_butterfly_noblock(n), torch.eye(n))
def rand_ortho_butterfly_nopermute(n):
return mul_ortho_butterfly(gen_rand_ortho_butterfly_nopermute(n), torch.eye(n))
class QuantMethod:
'''
Base class for quantization methods
'''
def __init__(self, layer):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), dtype=torch.float64, device=self.dev)
self.nsamples = 0
self.preproc_done = False
def add_batch(self, inp, out):
if DEBUG:
self.inp1 = inp
self.out1 = out
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(
self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(self.layer.kernel_size,
dilation=self.layer.dilation,
padding=self.layer.padding,
stride=self.layer.stride)
inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)
self.nsamples += tmp
inp = inp.to(torch.float64)
self.H.add_(inp.matmul(inp.t()))
def post_batch(self):
self.H = (self.H / self.nsamples).to(torch.float32)
def preproc(self, preproc_gptqH=False, percdamp=.01,
preproc_rescale=False, preproc_proj=False, preproc_proj_extra=0):
"""
optional preprocessing: scales w,H diagonally, or random projection
run gptqH last
preproc_proj_extra:
0: 2 factor butterfly + permute
1: 2 factor butterfly + permute + no blocking
2: 2 factor butterfly + no permute
3: random orthogonal
"""
self.preproc_gptqH = preproc_gptqH
self.preproc_rescale = preproc_rescale
self.preproc_proj = preproc_proj
if preproc_rescale:
w = self.layer.weight.data.clone().to(torch.float32)
H = self.H.to(torch.float32)
H /= H.abs().max()
diagH = torch.diag(H)
diagW2 = torch.diag(w.T @ w)
diagH = torch.clamp(diagH, min=1e-8)
diagW2 = torch.clamp(diagW2, min=1e-8)
scaleWH = (diagH / diagW2).sqrt().sqrt().to(torch.float32)
scaleWH = scaleWH.clamp(min=1e-8)
w *= scaleWH[None,:]
H /= scaleWH[None,:]
H /= scaleWH[:,None]
w = w.to(torch.float32)
scaleWH = scaleWH.to(torch.float32)
self.scaleWH = scaleWH.cpu()
self.layer.weight.data = w.to(self.layer.weight.data.dtype)
self.H.data = H.to(self.H.data.dtype)
if preproc_proj:
w = self.layer.weight.data.clone().to(torch.float32)
H = self.H.data.clone().to(torch.float32)
#
if preproc_proj_extra == 0:
U = rand_ortho_butterfly(w.shape[0]).to(torch.float32).to(w.device)
V = rand_ortho_butterfly(w.shape[1]).to(torch.float32).to(w.device)
elif preproc_proj_extra == 1:
U = rand_ortho_butterfly_noblock(w.shape[0]).to(torch.float32).to(w.device)
V = rand_ortho_butterfly_noblock(w.shape[1]).to(torch.float32).to(w.device)
elif preproc_proj_extra == 2:
U = rand_ortho_butterfly_nopermute(w.shape[0]).to(torch.float32).to(w.device)
V = rand_ortho_butterfly_nopermute(w.shape[1]).to(torch.float32).to(w.device)
#EH = torch.linalg.eigh(H)
#H = (EH.eigenvectors @ torch.diag(EH.eigenvalues.relu() * H.shape[0] / (EH.eigenvalues.relu().sum() + 1e-8) + 1e-2) @ EH.eigenvectors.T).to(w.device)
#H = H.to(torch.float32)
H = H * (H.shape[0] / (torch.trace(H) + 1e-8)) + 1e-2 * torch.eye(H.shape[0], device=w.device)
H = H.to(torch.float32)
w = U @ w @ V.T
H = V @ H @ V.T
self.projU = U.cpu()
self.projV = V.cpu()
self.layer.weight.data = w.to(self.layer.weight.data.dtype)
self.H.data = H.to(self.H.data.dtype)
# H modification from gptq
if self.preproc_gptqH:
w = self.layer.weight.data.clone()
H = self.H.data.clone()
dead = torch.diag(H) == 0
H[dead, dead] = 1
w[:, dead] = 0
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
self.layer.weight.data = w.to(self.layer.weight.data.dtype)
self.H.data = H.to(self.H.data.dtype)
self.preproc_done = True
def postproc(self):
assert self.preproc_done is True
if self.preproc_proj:
w = self.layer.weight.data.clone().to(torch.float32)
H = self.H.data.clone().to(torch.float32)
U = self.projU.to(w.device)
V = self.projV.to(w.device)
w = (U.T @ w @ V)
H = (V.T @ H @ V)
self.layer.weight.data = w.to(self.layer.weight.data.dtype)
self.H.data = H.to(self.H.data.dtype)
if self.preproc_rescale:
w = self.layer.weight.data.clone()
H = self.H.data.clone()
scaleWH = self.scaleWH.to(w.device)
w = w / scaleWH[None,:]
H = H * scaleWH[:,None]
H = H * scaleWH[None,:]
self.layer.weight.data = w.to(self.layer.weight.data.dtype)
self.H.data = H.to(self.H.data.dtype)
def free(self):
if DEBUG:
self.inp1 = None
self.out1 = None
self.H = None
self.Losses = None
self.Trace = None
self.scaleWH = None
self.projU = None
self.projV = None
torch.cuda.empty_cache()
def error_compute(self, full_W, quant_W):
full_W = full_W.float()
quant_W = quant_W.float()
self.error = ((full_W - quant_W) @ self.H.type(torch.float)
@ (full_W - quant_W).T).trace().item()
self.Hmag = self.H.max().item()