forked from Cornell-RelaxML/QuIP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
llama_saveH.py
246 lines (206 loc) · 8.71 KB
/
llama_saveH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import time
import torch
import torch.nn as nn
from gptq import *
from bal import Balance
from near import Nearest
from modelutils import *
from quant import *
from tqdm import tqdm
from llama import get_llama
@torch.no_grad()
def llama_sequential_saveH(model, dataloader, dev, args):
print('Starting ...')
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
print('Ready.')
quantizers = {}
errors, Hmags, times = [], [], []
for i in tqdm(range(len(layers))):
layer = layers[i].to(dev)
subset = find_layers(layer)
quant_method = {}
# Initialize Quant Method and Compute H
for name in subset:
if args.quant == 'gptq':
quant_method[name] = GPTQ(subset[name])
quant_method[name].quantizer = Quantizer()
quant_method[name].quantizer.configure(args.wbits,
perchannel=True,
sym=False,
qfn=args.qfn,
mse=False)
elif args.quant == 'nearest':
quant_method[name] = Nearest(subset[name])
quant_method[name].quantizer = Quantizer()
quant_method[name].quantizer.configure(args.wbits,
perchannel=True,
sym=False,
qfn=args.qfn,
mse=False)
elif args.quant == 'gptq_updown':
quant_method[name] = GPTQ_UD(subset[name])
quant_method[name].quantizer = Quantizer()
quant_method[name].quantizer.configure(args.wbits,
perchannel=True,
sym=False,
qfn=args.qfn,
mse=False)
elif args.quant in ['bitbal','parbal','allbal']:
quant_method[name] = Balance(subset[name])
quant_method[name].configure(
args.quant,
args.wbits,
args.npasses,
unbiased=False)
quant_method[name].quantizer = Quantizer()
quant_method[name].quantizer.configure(args.wbits,
perchannel=True,
sym=False,
qfn=args.qfn,
mse=False)
def add_batch(name):
def tmp(_, inp, out):
quant_method[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0),
attention_mask=attention_mask)[0]
for h in handles:
h.remove()
# (H / nsamples).to(torch.float32)
for name in subset:
quant_method[name].post_batch()
# Quantize Weights and Save Hessian
for name in subset:
# print(i, name)
# print('Quantizing ...')
quant_method[name].preproc(
preproc_gptqH=True, percdamp=args.percdamp,
preproc_rescale=False,
preproc_proj=False, preproc_proj_extra=0)
if args.quant == 'gptq':
quant_method[name].fasterquant(groupsize=args.groupsize, copy_H=True)
quantizers['model.layers.%d.%s' %
(i, name)] = quant_method[name].quantizer
if args.quant == 'gptq_updown':
quant_method[name].fasterquant_updown(groupsize=args.groupsize)
elif args.quant in ['bitbal','parbal','allbal']:
quant_method[name].fasterquant()
elif args.quant == 'nearest':
quant_method[name].fasterquant()
fname = f'{args.save}/H_model.layers.{i}.{name}.pt'
torch.save(quant_method[name].H.cpu(), fname)
quant_method[name].free()
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0),
attention_mask=attention_mask)[0]
layers[i] = layer.cpu()
del layer
del quant_method
torch.cuda.empty_cache()
inps, outs = outs, inps
model.config.use_cache = use_cache
print(f'Total quant time: {sum(times):.2f}s')
return
if __name__ == '__main__':
import argparse
from datautils import *
parser = argparse.ArgumentParser()
parser.add_argument('model',
type=str,
help='Llama model to load; pass `meta-llama/llama-2-X`.')
parser.add_argument('dataset',
type=str,
choices=['wikitext2', 'ptb', 'c4'],
help='Where to extract calibration data from.')
parser.add_argument('--seed',
type=int,
default=0,
help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples',
type=int,
default=128,
help='Number of calibration data samples.')
parser.add_argument(
'--percdamp',
type=float,
default=.01,
help='Percent of the average Hessian diagonal to use for dampening.')
parser.add_argument('--quant',
choices=['bitbal', 'parbal', 'allbal', 'nearest', 'gptq', 'gptq_updown'],
default='nearest',
help='Which quantization method to use.')
parser.add_argument(
'--wbits',
type=int,
default=16,
choices=[2, 3, 4, 16],
help='#bits to use for quantization; use 16 for evaluating base model.')
parser.add_argument(
'--npasses',
type=int,
default=1,
help='number passes to repeat balance loop over 1-d.')
parser.add_argument(
'--groupsize',
type=int,
default=-1,
help='Groupsize to use for quantization; default uses full row.')
parser.add_argument('--qfn',
type=str,
default='a',
help='qfn: a is default, b is sym incoherent based')
parser.add_argument('--save',
type=str,
default='',
help='Save quantized checkpoint under this name.')
args = parser.parse_args()
assert args.save
model = get_llama(args.model)
model.eval()
dataloader, _ = get_loaders(args.dataset,
nsamples=args.nsamples,
seed=args.seed,
model=args.model,
seqlen=model.seqlen)
if args.wbits < 16:
# Preprocessing flags
if args.qfn=='b': assert args.pre_proj is True
print(f"preprocessing flags: gptqH:True, rescale:False, proj:False, qfn:{args.qfn}")
tick = time.time()
llama_sequential_saveH(model, dataloader, DEV, args)
print("Done save H")
print("")