forked from Cornell-RelaxML/QuIP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
gptq_counter.py
43 lines (37 loc) · 1.15 KB
/
gptq_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
from vector_balance import round_ldl_gptqequiv
def proxy_loss(dw, H):
return (dw @ H @ dw.T).trace()
def counter(n, d, c):
H = torch.ones(n,n) + torch.eye(n)
H[n-1,n-1] = 1.0
H[0,1:(n-1)] += 2 * c
H[1:(n-1),0] += 2 * c
H[0,n-1] += c
H[n-1,0] += c
H[0,0] += 4 * c + n * (c**2)
w = 0.499 * torch.ones(d,n) + 0.002 * (torch.arange(n) % 2)
# quantize
w_ldl = round_ldl_gptqequiv(w, H, 2)
w_ldl_stoch = round_ldl_gptqequiv(w, H, 2, unbiased=True)
w_near = w.round()
w_stoch = (w + (torch.rand(d,n))).floor()
ldl_loss = proxy_loss(w_ldl-w, H)
ldl_stoch_loss = proxy_loss(w_ldl_stoch-w, H)
near_loss = proxy_loss(w_near-w, H)
stoch_loss = proxy_loss(w_stoch-w, H)
print(f"ldl_loss: {ldl_loss}")
print(f"ldl_stoch_loss: {ldl_stoch_loss}")
print(f"near_loss: {near_loss}")
print(f"stoch_loss: {stoch_loss}")
if __name__ == "__main__":
# counter(128, 4, 0.01)
counter(256, 256, 0.01)
print('-----')
counter(512, 512, 0.01)
print('-----')
counter(1024, 1024, 0.01)
print('-----')
counter(2048, 2048, 0.01)
print('-----')
counter(4096, 4096, 0.01)