-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
149 lines (124 loc) · 5.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Aditya Seth
# Description: This file contains the main code for the Audio-SpectraCLI project.
# It is responsible for creating the AudioSpectrumVisualizer class which is used
# to visualize the audio spectrum in real-time.
import numpy as np
import matplotlib.pyplot as plt
import sounddevice as sd
import queue
import threading
from scipy.ndimage import gaussian_filter1d
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget, QSlider
from PyQt5.QtCore import Qt, QTimer
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
class AudioSpectrumVisualizer(QMainWindow):
def __init__(self, duration=10, fs=44100, block_size=4096, frequency_range=(20, 20000), color='blue'):
super().__init__()
self.setWindowTitle('Audio Spectrum Visualizer')
self.setGeometry(100, 100, 800, 600)
self.duration = duration # Duration in seconds
self.fs = fs # Sampling rate
self.block_size = block_size # Block size
self.frequency_range = frequency_range # Frequency range
self.color = color # Color
self.audio_queue = queue.Queue()
self.spectrum = np.zeros(self.block_size)
self.noise_threshold = 0.05 # Adjusted for lower noise level
self.running = False
self.stream = None
self.setup_ui()
def setup_ui(self):
self.central_widget = QWidget()
self.setCentralWidget(self.central_widget)
self.layout = QVBoxLayout()
self.canvas = FigureCanvas(Figure(figsize=(5, 3)))
self.ax = self.canvas.figure.add_subplot(111)
self.layout.addWidget(self.canvas)
self.duration_slider = QSlider(Qt.Horizontal)
self.duration_slider.setMinimum(1)
self.duration_slider.setMaximum(10)
self.duration_slider.setValue(self.duration)
self.duration_slider.setTickInterval(1)
self.duration_slider.setTickPosition(QSlider.TicksBelow)
self.duration_slider.valueChanged.connect(self.set_duration)
self.layout.addWidget(QLabel('Duration (seconds):'))
self.layout.addWidget(self.duration_slider)
self.fs_slider = QSlider(Qt.Horizontal)
self.fs_slider.setMinimum(22050)
self.fs_slider.setMaximum(44100)
self.fs_slider.setValue(self.fs)
self.fs_slider.setTickInterval(11025)
self.fs_slider.setTickPosition(QSlider.TicksBelow)
self.fs_slider.valueChanged.connect(self.set_sampling_rate)
self.layout.addWidget(QLabel('Sampling Rate (Hz):'))
self.layout.addWidget(self.fs_slider)
self.block_size_slider = QSlider(Qt.Horizontal)
self.block_size_slider.setMinimum(256)
self.block_size_slider.setMaximum(8192)
self.block_size_slider.setValue(self.block_size)
self.block_size_slider.setTickInterval(512)
self.block_size_slider.setTickPosition(QSlider.TicksBelow)
self.block_size_slider.valueChanged.connect(self.set_block_size)
self.layout.addWidget(QLabel('Block Size:'))
self.layout.addWidget(self.block_size_slider)
self.start_button = QPushButton('Start Visualization')
self.start_button.clicked.connect(self.toggle_visualization)
self.layout.addWidget(self.start_button)
self.central_widget.setLayout(self.layout)
def audio_callback(self, indata, frames, time, status):
if status:
print(status)
self.audio_queue.put(indata.copy())
def process_audio(self):
while self.running:
if not self.audio_queue.empty():
audio_block = self.audio_queue.get()
spectrum = np.abs(np.fft.rfft(
audio_block[:, 0], n=self.block_size))
spectrum = gaussian_filter1d(
spectrum, sigma=2) # Apply smoothing filter
max_magnitude = np.max(spectrum)
print(f'Max magnitude: {max_magnitude}') # Debugging print
if max_magnitude > self.noise_threshold:
self.update_plot(spectrum, max_magnitude)
def update_plot(self, spectrum, max_magnitude):
freq_bins = np.fft.rfftfreq(self.block_size, 1 / self.fs)
self.ax.clear()
self.ax.plot(freq_bins, spectrum, color=self.color)
self.ax.set_xlim(self.frequency_range)
self.ax.set_ylim(0, max_magnitude * 0.5)
self.ax.set_xlabel('Frequency (Hz)')
self.ax.set_ylabel('Magnitude')
self.ax.set_title('Audio Spectrum Visualization')
self.canvas.draw()
def set_duration(self, value):
self.duration = value
def set_sampling_rate(self, value):
self.fs = value
def set_block_size(self, value):
self.block_size = value
def toggle_visualization(self):
if self.running:
self.running = False
if self.stream is not None:
self.stream.stop()
self.stream.close()
self.start_button.setText('Start Visualization')
else:
self.running = True
sd.default.samplerate = self.fs
sd.default.channels = 1
self.stream = sd.InputStream(callback=self.audio_callback)
self.stream.start()
audio_thread = threading.Thread(
target=self.process_audio, daemon=True)
audio_thread.start()
self.start_button.setText('Stop Visualization')
def closeEvent(self, event):
self.running = False
if self.stream is not None:
self.stream.stop()
self.stream.close()
event.accept()
__all__ = ['AudioSpectrumVisualizer']